
# Refrigeration



# <u>Refrigeration – Mechanical Refrigeration</u>

- Most storage facilities use mechanical refrigeration to control storage temperature.
- Liquid absorbs heat as it changes to a gas.
- Controlled release of liquid nitrogen or liquid carbon dioxide in the storage area is the simplest method.
- Common mechanical refrigeration systems ammonia or halide fluids as refrigerants.

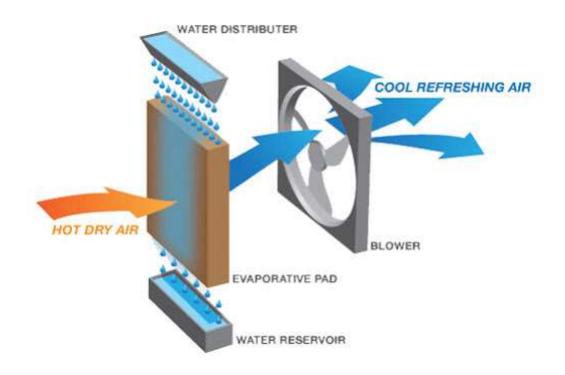
# Refrigeration – Mechanical Refrigeration



# <u>Refrigeration – Mechanical Refrigeration - Parts</u>

| Part             | Features & Functions                                                                                                                                                                                                                                                                                                                                            |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Expansion valves | <ul> <li>Primary controlling unit of small mechanical refrigeration systems.</li> <li>Regulates the pressure of the refrigerant in the evaporator.</li> <li>Controls the flow of refrigerant.</li> <li>Capillary tubes and thermostatic expansion valves are the common types.</li> <li>Large mechanical refrigeration systems have expansion coils.</li> </ul> |

# <u>Refrigeration – Mechanical Refrigeration - Parts</u>


| Part        | Features & Functions                                                                                                                                                                           |  |  |  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Evaporators | <ul> <li>Used in modern cold storages.</li> <li>Air from the storage is forced past the evaporator.</li> <li>Transfer heat from the air to the refrigerant causing it to evaporate.</li> </ul> |  |  |  |
| Compressors | <ul> <li>Recaptures the vaporized refrigerant.</li> <li>Repressurize the vaporized refrigerant.</li> </ul>                                                                                     |  |  |  |

# <u>Refrigeration – Mechanical Refrigeration - Parts</u>

| Part               | Features & Functions                                                                                                                        |  |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Condensers         | <ul> <li>Cools the vaporized refrigerant to a liquid.</li> <li>Can be either air cooled or water cooled.</li> </ul>                         |  |  |
| Refrigerants       | <ul><li>Cost of the refrigerant.</li><li>Compatibility.</li><li>Toxicity.</li></ul>                                                         |  |  |
| Control<br>systems | <ul> <li>To facilitate manual operation of motors.</li> <li>To display the operating status of compressors and the fluid levels.</li> </ul> |  |  |

#### 1. Evaporative cooling

- Energy efficient and economical.
- Produces air with RH greater than 90%.
- Water for the cooling system comes from domestic sources.



#### 2. Nighttime cooling

- Nighttime ventilation is used as a source of refrigeration.
- Commonly used for unrefrigerated storage of potato, sweet potato, onion and pumpkin.

#### 3. Well water

- Can be an effective source of refrigeration.
- The temperature of the ground water greater than 2m below the surface is equal to the average annual air temperature.

#### 4. Naturally formed ice

 Natural ice harvested during winter has been used as a source of refrigerant during spring and summer.

#### 5. High altitude cooling

- Air temperature decreases by 1 °C with every 100m increase in altitude.
- This cool air cannot be taken to ground level as it gets heated due to compression.
- Store commodities at high altitudes in mountainous areas.

#### 6. <u>Underground storage</u>

- Cellars, abandoned mines and other underground spaces can be used to store fruits and vegetables.
- Good for storing already cooled commodities.
- Soil has a poor ability to transfer heat.






- Must be sized to handle peak amounts of products.
- Should have adequate room for aisle ways for easier forklift handling.



- Maximum storage can be increased by using shelves or racks.
- Multistory structures are not used.
- The floor perimeter should have a square shape.
- Entrances, storage area and exits should be in a way that moves products in one direction.
- Availability of good utility services.
- Good drainage and room for future expansion.
- Enough space for smooth movement of large trucks.

- Vapour barriers are installed in floor and foundation.
- Walls and ceiling are insulated using rigid foam boards.



# Controlled Atmosphere Storage

# <u>Controlled Atmosphere Storage - CAS</u>

- Utilizes O<sub>2</sub> and CO<sub>2</sub> concentrations of about 1-5% for each gas.
- This causes;
- ✓ Reduction in senescence and other related biochemical and physiological changes.
- ✓ Reduction of commodity sensitivity to ethylene.
- ✓ Alleviation of certain physiological disorders.
- ✓ Affects post-harvest pathogens, decay incidence and severity (Botrytis rot on strawberry).
- ✓ Useful tool to control insects in some commodities.

# <u>Controlled Atmosphere Storage - CAS</u>

- Potential harmful effects include;
- ✓ Initiation / aggravation of certain physiological disorders.
- ✓ Irregular ripening of fruits.
- ✓ Off-flavour and off odour development due to anaerobic respiration.
- ✓ Susceptibility to decay may increase.

# Fruits and vegetables are classified according to their tolerance to low O<sub>2</sub> concentrations

| Minimum O <sub>2</sub> concentration tolerated (%) | Commodities                                              |
|----------------------------------------------------|----------------------------------------------------------|
| 0.5                                                | Nuts, dried fruits and vegetables                        |
| 1.0                                                | Minimally processed fruits and vegetables, onion, garlic |
| 2.0                                                | Strawberry, papaya, pineapple, lettuce, cabbage          |
| 3.0                                                | Avocado, tomato, pepper, cucumber                        |
| 5.0                                                | Citrus fruits, potato, sweet potato                      |

# Fruits and vegetables are classified according to their tolerance to elevated CO<sub>2</sub> concentrations

| Maximum CO <sub>2</sub> concentration tolerated (%) | Commodities                                       |
|-----------------------------------------------------|---------------------------------------------------|
| 2                                                   | Apple, tomato, lettuce, grape                     |
| 5                                                   | Orange, avocado, banana, mango, eggplant, cabbage |
| 10                                                  | Pineapple, cucumber, okra, garlic, potato         |
| 15                                                  | Strawberry, blackberry,<br>blueberry, spinach     |

# CA recommendations for some vegetables

| Commodity | Temperature<br><sup>0</sup> C | O <sub>2</sub> % | CO <sub>2</sub> % | Time       |
|-----------|-------------------------------|------------------|-------------------|------------|
| Cabbage   | 0                             | 2-3              | 5-10              | 10 days    |
| Cucumber  | 12                            | 1-4              | 0                 | 20 days    |
| Garlic    | -1                            | 3                | 5                 | 07 months  |
| Leeks     | 0                             | 2-4              | 5-10              | 05 months  |
| Onion     | 0                             | 1-2              | 0-1               | 09 months  |
| Tomato    | 2                             | 3-4              | 2-3               | 30-40 days |

# <u>CAS – Atmospheric Modification</u>

- The slowest method is by natural respiration of product.
- If O<sub>2</sub> drops too low, outside air is added to restore it.
- Respiration increases CO<sub>2</sub> levels above the requirement.
- Bags of hydrated lime are used to absorb excess CO<sub>2</sub>.
- CO<sub>2</sub> can also be controlled by activated carbon absorption systems, molecular sieves, or brine pumped over evaporator coils.
- Scrubbers using activated charcoal are currently the most popular.

# CAS – Atmospheric Modification

- Some operations purge the CA room with nitrogen.
- Some operations use either molecular sieve process or semipermeable membrane to remove oxygen.
- Some use machines to remove oxygen by combustion of natural gas or propane.

# **Examples of CA injury**

| Commodity | CO <sub>2</sub> injury<br>level | CO <sub>2</sub> injury symptoms | O <sub>2</sub> injury<br>level | O <sub>2</sub> injury symptoms |
|-----------|---------------------------------|---------------------------------|--------------------------------|--------------------------------|
| Apple     | >3%                             | Internal<br>browning            | <1%                            | Alcoholic<br>taste             |
| Banana    | >7%                             | Green fruit softening           | <1%                            | Browning                       |
| Cabbage   | >10%                            | Discolouration of inner leaves  | <25%                           | Off flavour                    |
| Mango     | >10%                            | softening                       | <2%                            | Skin<br>discolouration         |