Course Title	Mathematical Modeling			Course Code	MT 21012		
				Prerequisites	-		
Year	2	Semester	1	Credits	2	Theory (hr)	30
						Practical (hr)	
						Independent	
						Learning (hr)	

Aim:

To educate in the theoretical and practical aspects of mathematical problem solvingand mathematical model development.

Intended Learning Outcomes:

On the successful completion of the course, students should be able to:

- 1. Explain how the general principles arise in the context of Mathematical Modeling.
- 2. Analyze some existing mathematical models and construct meaningful models of simple mechanical, financial, physical and biological system.
- 3. Formulate, solve and interpret real world problems.

Course content:

- Modeling methodology: Introduction, Definitions and terminology
- Modeling skills: Listing factors, making assumptions, formulating models.
- Modeling using difference equations for mechanical, financial, physical and biological system.
- Modeling using differential equations for mechanical, financial, physical and biological system.
- Case studies and presentation of models.

Assessment Strategy:* *Changed due to epidemic situations

- Continuous Assessment 40%
 Assessment-1 (ILO-1, ILO-2) -Open book exam (10%)
 Assessemnt-2 (ILO-2) Open book exam (10%)
 Assessment-3 (ILO-3) Open book exam (10%)
 Assessment-4 (ILO-2, ILO-3) Open book exam (10%)
- End Semester Examination ILO 1 3) -60% Closed book exam - 2 Hours

References:

- 1. Frank R. Giordano, William P. Fox, Steven B. Horton and Maurice D. Weir, *A First Course in Mathematical Modeling*, Brooks/Cole, Cengage Learning, 2009;
- 2. Dilwyn Edwards and Mike Hamson, Guide 2 Mathematical Modelling, Palgrave, 2007.