# SOUTH EASTERN UNIVERSITY OF SRI LANKA DEPARTMENT OF MATHEMATICAL SCIENCES FACULTY OF APPLIED SCIENCES

## MTS 00033 MULTIVARIATE CALCULUS

## 1. LIMITS AND CONTINUITY

#### 1.1 Preliminaries

### **Definition 1.1** A point on $\mathbb{R}^n$

Let  $D \subseteq \mathbb{R}^n$ . Any ordered n-tuple  $\underline{x} = (x_1, x_2, \dots, x_n)$  of real numbers in D is called a 'point' in D.

For example (1, -1) is a point on  $\mathbb{R}^2$  and (1, 0, 7) is a point on  $\mathbb{R}^3$ .

### Definition 1.2 Open and Closed Balls

Open ball of radius r centered at  $\underline{a} \in \mathbb{R}^n$  is defined as





The set of all points

$$\overline{B_r}(\underline{a}) = \left\{ \underline{x} \in \mathbb{R}^n \mid \left\| \underline{x} - \underline{a} \right\| \le r \right\}$$

is called the closed ball of radius r centered at  $\underline{a}$ .

For example, let  $\underline{a} = (a, b) \in \mathbb{R}^2$ . An open ball in  $\mathbb{R}^2$  centered at  $\underline{a}$  has the form

$$B_r(\underline{a}) = \{ \underline{x} \in \mathbb{R}^2 | |\underline{x} - \underline{a}| < r \}$$
$$= \{ (x, y) \in \mathbb{R}^2 : (x - a)^2 + (y - b)^2 < r^2 \}$$

**Example 1.1** Find each of the following:

- (i) Open ball centered at 2 and radius 3 in  $\mathbb{R}$ .
- (ii) Open ball centered at (2, -1) and radius 1 in  $\mathbb{R}^2$ .
- (iii) Unit closed ball centered at the origin in  $\mathbb{R}^3$ .

### **Definition 1.3** Limit Points of a set

A point  $\underline{a}$  is called a limit point of the set D if and only if every open balls centered at  $\underline{a}$  contain some points of D other than  $\underline{a}$ .

That is,

$$D\cap \left(B_r\bigl(\underline{a}\bigr)\setminus\{\underline{a}\}\right)\neq \Phi$$

for any arbitrary small r > 0.

**Example 1.2** Find the set of all limit points of the open interval I = (a, b).

**Proposition 1.1** A finite set of points has no limit points.

**Example 1.3** Consider the set  $D = \{\underline{a}, \underline{b}, \underline{c}\}$ , where  $\underline{a} = (1, 3), \underline{b} = (2, 1), \underline{c} = (4, -1)$ . Show that D has no limit points.

**Proposition 1.2** Every points of  $\mathbb{R}^n$  is a limit point of  $\mathbb{R}^n$ .

**Example 1.4** Every points of  $\mathbb{R}^2$  is a limit point of  $\mathbb{R}^2$ .

# Definition 1.4 Functions of several variables

Let  $D \subseteq \mathbb{R}^n$ . A function  $f: D \to \mathbb{R}^m$  of n – variables is a rule that assigns each point  $\underline{x} = (x_1, x_2, \dots, x_n) \in D$  to a point  $\underline{y} = (y_1, y_2, \dots, y_m) \in \mathbb{R}^m$ , denoted by  $f(\underline{x}) = \underline{y}$ . Here D is called the domain of the function f and the set of all points that f takes on  $\mathbb{R}^m$  is called the range of f. That is, range of  $f = \{f(\underline{x}) \mid \underline{x} \in D\}$ .

When m = 1, the function is called single valued function; otherwise, it is called multivalued or vector (valued) functions.

When n = 1, f(x) is a function of single variable; otherwise, it is a function of several variables.

**Example 1.5** Find the natural domain and range of the each of the following functions:

(i)  $f(x,y) = x^2 + y^2$ , (ii)  $g(x,y) = x \ln(y^2 - x)$ , (iii)  $h(x,y,z) = \sqrt{9 - x^2 - y^2 - z^2}$ .

#### **EXERCICES 1**

- 1. Find the set of all limit points of the open ball  $B_r(\underline{a})$  in  $\mathbb{R}^n$ . What is the set of all limit points of the interval [a, b).
- 2. Find the all limit points of the set  $D = \left\{ \left(\frac{1}{m}, \frac{1}{n}\right) : m, n \in \mathbb{N} \right\}$ .

# **1.2** Limit of a function

### Definition 1.5 The limit point of a function

Let  $\underline{a}$  be a limit point of  $D \ (\subseteq \mathbb{R}^n)$ . Then, we say that the function  $f: D \to \mathbb{R}^m$  converges to a point  $\underline{l} \in \mathbb{R}^m$  (or  $\underline{l}$  is the limit of f at  $\underline{a}$ ) if and only if for each  $\varepsilon > 0$ , there exists a  $\delta > 0$  such that

$$0 < ||\underline{x} - \underline{a}|| < \delta$$
 (or  $\underline{x} \in B_{\delta}(\underline{a})$ )  $\Rightarrow$   $||f(\underline{x}) - \underline{l}|| < \varepsilon$ .

**Example 1.6** Show that

$$\lim_{(x,y)\to(0,0)}\frac{3x^2y}{x^2+y^2}=0$$

**Example 1.7** Show that  $\lim_{(x,y)\to(1,1)} (x^2 + xy + y^2) = 3$ .

**Remark:** Most of the theorems and rules we had for function of single variable can be extended for functions of several variables.

# **1.3** Techniques of finding limits:

# **1.3.1** Use of Squeeze Lemma

**Lemma 1.1** If  $f(\underline{x})$ ,  $g(\underline{x})$ ,  $h(\underline{x})$  are functions such that

$$\lim_{\underline{x} \to \underline{a}} f(\underline{x}) = \lim_{\underline{x} \to \underline{a}} h(\underline{x}) = \underline{l}$$
  
then,  $\lim_{\underline{x} \to \underline{a}} g(\underline{x})$  exists and  $\lim_{\underline{x} \to \underline{a}} g(\underline{x}) = \underline{l}$ .

**Example 1.8** Show that

$$\lim_{(x,y)\to(0,0)}\frac{3x^2y}{x^2+y^2}=0.$$

**Example 1.9** Evaluate  $\lim_{(x,y)\to(0,0)} \frac{x^2 \sin^2 y}{x^2 + 2y^2}$ .

**Example 1.10** Evaluate  $\lim_{(x,y)\to(0,0)} \sin x \sin\left(\frac{1}{x+y}\right)$ .

# **1.3.2** Use of Polar Coordinates

Let  $x = r \cos \theta$ ,  $y = r \sin \theta . \sin \theta$  Then,  $(x, y) \rightarrow (0, 0)$  implies that  $r \rightarrow 0^+$ .

**Example 1.11** Evaluate  $\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2}$ .

**Example 1.12** Evaluate 
$$\lim_{(x,y)\to(1,2)} \frac{(x+y-3)^2}{\sqrt{(x-1)^2+(y-2)^2}}$$
.

Examples on Functions of three or more variables.

**Example 1.13** Evaluate 
$$\lim_{(x,y,z,t)\to(0,0,0,0)} \frac{(x^2+y^2)(z^2+t^2)}{(x^2+y^2+z^2+t^2)}$$
.

**Example 1.14** Evaluate  $\lim_{(x,y,z,)\to(1,0,0,)} \tan(y-xz) \cos\left(\frac{1}{(x-1)y+z^2}\right)$ .

# **1.3.3** To Show Limit Does Not Exist

**Lemma 1.2** If  $\lim_{x \to a} f(\underline{x}) = \underline{l}$  exists, then

- (i) its value l is unique, and
- (ii)  $\underline{l}$  is independent of the choice of any path approaching  $\underline{a}$ .

We use this fact to show that the limit of a function does not exist. i.e. if the limit of a function along two different Paths are not equal, then  $\lim_{\underline{x}\to\underline{a}} f(\underline{x})$  does not exist.

**Example 1.15** Find the limit or show that the limit does not exists:

$$\lim_{(x,y)\to(0,0)}\frac{x^2-y^2}{x^2+y^2}.$$

**Example 1.16** Find the limit or show that the limit does not exists:

$$\lim_{(x,y)\to(0,0)}\frac{xy}{x^2+y^2}.$$

**Example 1.17** Find the limit or show that the limit does not exists:

$$\lim_{(x,y)\to(0,0)}\frac{x^2y}{x^4+y^2}$$

# 1.4 Repeated (Iterated) limits

**Definition 1.6** Let the function f(x, y) is defined in the neighborhood of (a, b). Then the limit  $\lim_{y\to b} (\lim_{x\to a} f(x, y))$ , if exist , is said to be repeated limits of f as  $x \to a$ ,  $y \to b$ .

# **Remarks:**

i. In general, 
$$\lim_{y \to b} (\lim_{x \to a} f(x, y)) \neq \lim_{x \to a} (\lim_{y \to b} f(x, y))$$
.

ii. If  $\lim_{(x,y)\to(a,b)} f(x,y)$  exists, then ,  $\lim_{y\to b} \left(\lim_{x\to a} f(x,y)\right) = \lim_{x\to a} \left(\lim_{y\to b} f(x,y)\right)$ . But the converse is not true.

iii. If 
$$\lim_{y \to b} \left( \lim_{x \to a} f(x, y) \right) \neq \lim_{x \to a} \left( \lim_{y \to b} f(x, y) \right)$$
 then  $\lim_{(x, y) \to (a, b)} f(x, y)$  does not exist.

**Example 1.18** Show that iterated limits exist but simultaneous limit does not exist for the function

$$f(x,y) = \frac{xy}{x^2 + y^2}; \quad D = \mathbb{R} \setminus \{(0,0)\}.$$

**Example 1.19** Show that iterated limits exist but simultaneous limit does not exist for the function

$$f(x,y) = \begin{cases} 1, & xy \neq 0 \\ 0, & xy = 0 \end{cases}; \quad D = \mathbb{R} \setminus \{(0,0)\}.$$

**Example 1.20** Verify that if iterated limits exist and equal and simultaneous limit exists, then they are equal to each other.

$$f(x,y) = \frac{3x^2y}{x^2 + y^2}; \quad D = \mathbb{R} \setminus \{(0,0)\}.$$

**Example 1.21** Find the iterated limits and simultaneous limit:

$$f(x,y) = \begin{cases} x \sin\left(\frac{1}{y}\right), & xy \neq 0\\ 0, & xy = 0 \end{cases}$$

**Example 1.22** Find the iterated limits and simultaneous limit:

$$f(x,y) = \begin{cases} x \sin\left(\frac{1}{y}\right) + y \sin\left(\frac{1}{x}\right), & xy \neq 0\\ 0, & xy = 0 \end{cases}$$

#### **1.5** Continuity of a function

**Definition 1.7** The function  $f: D \to \mathbb{R}$ ;  $D \subseteq \mathbb{R}^2$  is said to be continuous at a point  $(a, b) \in D$  if and only if for each  $\varepsilon > 0$ , there exists  $\delta(\varepsilon) > 0$  such that  $|f(x, y) - f(a, b)| < \varepsilon$  whenever  $\sqrt{(x-a)^2 + (y-b)^2} < \delta$ .

That is, The function f is continuous at (a, b) if and only if

$$\lim_{(x,y)\to(a,b)}f(x,y)=f(a,b).$$

A point (*a*, *b*) is said to be the point discontinuity if the function *f* is not continuous at (*a*, *b*).

**Example 1.23** Discuss the continuity of each of the following function:

(i) 
$$f(x, y) = \frac{x-y}{1+x+y}$$
,

(ii) 
$$g(x, y) = \frac{x-y}{1+x^2+y^2}$$
,

(iii)  $h(x,y) = \frac{3x^2y}{\sin \pi x}.$ 

**Example 1.24** Discuss the continuity of the following function

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

**Example 1.25** Investigate continuity of f(x, y):

$$f(x,y) = \begin{cases} \frac{3xy}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

**Example 1.26** Investigate continuity of 
$$f(x, y)$$
:

$$f(x,y) = \begin{cases} \frac{\sin^2(x-y)}{|x|+|y|}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$