SOUTH EASTERN UNIVERSITY OF SRI LANKA DEPARTMENT OF MATHEMATICAL SCIENCES FACULTY OF APPLIED SCIENCES

MTS 00033 MULTIVARIATE CALCULUS

1. LIMITS AND CONTINUITY

1.1 Preliminaries

Definition 1.1 A point on \mathbb{R}^n

Let $D \subseteq \mathbb{R}^n$. Any ordered n -tuple $\underline{x} = (x_1, x_2, \dots, x_n)$ of real numbers in D is called a 'point' in D .

For example $(1, -1)$ is a point on \mathbb{R}^2 and $(1, 0, 7)$ is a point on \mathbb{R}^3 .

Definition 1.2 Open and Closed Balls

Open ball of radius r centered at $a \in \mathbb{R}^n$ is defined as

The set of all points

$$
\overline{B_r}(\underline{a}) = \{ \underline{x} \in \mathbb{R}^n \mid ||\underline{x} - \underline{a}|| \le r \}
$$

is called the closed ball of radius r centered at a .

For example, let $a = (a, b) \in \mathbb{R}^2$. An open ball in \mathbb{R}^2 centered at α has the form

 \tilde{a}

$$
B_r(\underline{a}) = \{ \underline{x} \in \mathbb{R}^2 | |\underline{x} - \underline{a}| < r \}
$$
\n
$$
= \{ (x, y) \in \mathbb{R}^2 : (x - a)^2 + (y - b)^2 < r^2 \}
$$

Example 1.1 Find each of the following:

- (i) Open ball centered at 2 and radius 3 in ℝ.
- (ii) Open ball centered at $(2, -1)$ and radius 1 in \mathbb{R}^2 .
- (iii) Unit closed ball centered at the origin in \mathbb{R}^3 .

Definition 1.3 Limit Points of a set

A point α is called a limit point of the set D if and only if every open balls centered at α contain some points of D other than a .

That is,

$$
D \cap (B_r(\underline{a}) \setminus \{\underline{a}\}) \neq \Phi
$$

for any arbitrary small $r > 0$.

Example 1.2 Find the set of all limit points of the open interval $I = (a, b)$.

Proposition 1.1 A finite set of points has no limit points.

Example 1.3 Consider the set $D = {\underline{a}, \underline{b}, \underline{c}}$, where $\underline{a} = (1, 3), \underline{b} = (2, 1), \underline{c} = (4, -1)$. Show that D has no limit points.

Proposition 1.2 Every points of \mathbb{R}^n is a limit point of \mathbb{R}^n .

Example 1.4 Every points of \mathbb{R}^2 is a limit point of \mathbb{R}^2 .

Definition 1.4 Functions of several variables

Let $D \subseteq \mathbb{R}^n$. A function $f: D \to \mathbb{R}^m$ of n – variables is a rule that assigns each point \underline{x} = $(x_1, x_2, \dots, x_n) \in D$ to a point $y = (y_1, y_2, \dots, y_m) \in \mathbb{R}^m$, denoted by $f(\underline{x}) = y$. Here D is called the domain of the function f and the set of all points that f takes on \mathbb{R}^m is called the range of f. That is, range of $f = \{ f(x) | x \in D \}.$

When $m = 1$, the function is called single valued function; otherwise, it is called multivalued or vector (valued) functions.

When $n = 1$, $f(x)$ is a function of single variable; otherwise, it is a function of several variables.

Example 1.5 Find the natural domain and range of the each of the following functions:

(i) $f(x, y) = x^2 + y^2$, (ii) $g(x, y) = x \ln(y^2 - x)$, (iii) $h(x, y, z) = \sqrt{9 - x^2 - y^2 - z^2}$.

EXERCICES 1

- 1. Find the set of all limit points of the open ball $B_r(\underline{a})$ in \mathbb{R}^n . What is the set of all limit points of the interval $[a, b)$.
- 2. Find the all limit points of the set $D = \left\{ \left(\frac{1}{m} \right)$ $\frac{1}{m}, \frac{1}{n}$ $\frac{1}{n}$): $m, n \in \mathbb{N}$.

1.2 Limit of a function

Definition 1.5 The limit point of a function

Let *a* be a limit point of $D \subseteq \mathbb{R}^n$. Then, we say that the function $f: D \to \mathbb{R}^m$ converges to a point $l \in \mathbb{R}^m$ (or l is the limit of f at a) if and only if for each $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$
0 < \|\underline{x} - \underline{a}\| < \delta \quad \left(\text{or } \underline{x} \in B_{\delta}(\underline{a})\right) \implies \|f(\underline{x}) - \underline{l}\| < \varepsilon.
$$

Example 1.6 Show that

$$
\lim_{(x,y)\to(0,0)}\frac{3x^2y}{x^2+y^2}=0
$$

Example 1.7 Show that $\lim_{(x,y)\to(1,1)} (x^2 + xy + y^2) = 3.$

Remark: Most of the theorems and rules we had for function of single variable can be extended for functions of several variables.

1.3 Techniques of finding limits:

1.3.1 Use of Squeeze Lemma

Lemma 1.1 If $f(\underline{x})$, $g(\underline{x})$, $h(\underline{x})$ are functions such that $\lim_{\underline{x}\to \underline{a}} f(\underline{x}) = \lim_{\underline{x}\to \underline{a}} h(\underline{x}) = \underline{l},$ then, $\lim_{\underline{x}\to \underline{a}} g(\underline{x})$ exists and $\lim_{\underline{x}\to \underline{a}} g(\underline{x}) = \underline{l}$.

Example 1.8 Show that

$$
\lim_{(x,y)\to(0,0)}\frac{3x^2y}{x^2+y^2}=0.
$$

Example 1.9 Evaluate $\lim_{(x,y)\to(0,0)}$ x^2 sin² y $\frac{x^{2}+2y^{2}}{x^{2}+2y^{2}}$

Example 1.10 Evaluate $\lim_{(x,y)\to(0,0)} \sin x \sin \left(\frac{1}{x+1} \right)$ $\frac{1}{x+y}$).

1.3.2 Use of Polar Coordinates

Let $x = r \cos \theta$, $y = r \sin \theta \cdot \sin \theta$ Then, $(x, y) \rightarrow (0, 0)$ implies that $r \rightarrow 0^{+}$.

Example 1.11 Evaluate $\lim_{(x,y)\to(0,0)}$ $3x^2y$ $\frac{3x}{x^2+y^2}$.

Example 1.12 Evaluate
$$
\lim_{(x,y)\to(1,2)} \frac{(x+y-3)^2}{\sqrt{(x-1)^2+(y-2)^2}}
$$
.

Examples on Functions of three or more variables.

Example 1.13 Evaluate
$$
\lim_{(x,y,z,t)\to(0,0,0,0)} \frac{(x^2+y^2)(z^2+t^2)}{(x^2+y^2+z^2+t^2)}
$$
.

Example 1.14 Evaluate $\lim_{(x,y,z) \to (1,0,0)} \tan(y - \overline{x}z) \cos \left(\frac{1}{(x-1)} \right)$ $\frac{1}{(x-1)y+z^2}$.

1.3.3 To Show Limit Does Not Exist

Lemma 1.2 If $\lim_{x \to a} f(\underline{x}) = \underline{l}$ exists, then

- (i) its value l is unique, and
- (ii) l is independent of the choice of any path approaching a .

We use this fact to show that the limit of a function does not exist. i.e. if the limit of a function along two different Paths are not equal, then $\lim\limits_{x\to a}f(\underline{x})$ does not exist.

Example 1.15 Find the limit or show that the limit does not exists:

$$
\lim_{(x,y)\to(0,0)}\frac{x^2-y^2}{x^2+y^2}
$$

Example 1.16 Find the limit or show that the limit does not exists:

$$
\lim_{(x,y)\to(0,0)}\frac{xy}{x^2+y^2}.
$$

Example 1.17 Find the limit or show that the limit does not exists:

$$
\lim_{(x,y)\to(0,0)}\frac{x^2y}{x^4+y^2}
$$

1.4 Repeated (Iterated) limits

Definition 1.6 Let the function $f(x, y)$ is defined in the neighborhood of (a, b) . Then the limit $\lim_{y\to b} (\lim_{x\to a} f(x,y))$, if exist , is said to be repeated limits of f as $x\to a$, $y\to b$.

Remarks:

i. In general,
$$
\lim_{y \to b} (\lim_{x \to a} f(x, y)) \neq \lim_{x \to a} (\lim_{y \to b} f(x, y))
$$
.

ii. If $\lim_{(x,y)\to(a,b)} f(x,y)$ exists, then, $\lim_{y\to b} (\lim_{x\to a} f(x,y)) = \lim_{x\to a} (\lim_{y\to b} f(x,y))$. But the converse is not true.

iii. If
$$
\lim_{y \to b} (\lim_{x \to a} f(x, y)) \neq \lim_{x \to a} (\lim_{y \to b} f(x, y))
$$
 then $\lim_{(x,y) \to (a,b)} f(x, y)$ does not exist.

Example 1.18 Show that iterated limits exist but simultaneous limit does not exist for the function

$$
f(x,y) = \frac{xy}{x^2 + y^2}; \quad D = \mathbb{R} \setminus \{(0,0)\}.
$$

Example 1.19 Show that iterated limits exist but simultaneous limit does not exist for the function

$$
f(x,y) = \begin{cases} 1, & xy \neq 0 \\ 0, & xy = 0 \end{cases}; \quad D = \mathbb{R} \setminus \{ (0,0) \}.
$$

Example 1.20 Verify that if iterated limits exist and equal and simultaneous limit exists, then they are equal to each other.

$$
f(x,y) = \frac{3x^2y}{x^2 + y^2}; \quad D = \mathbb{R} \setminus \{ (0,0) \}.
$$

Example 1.21 Find the iterated limits and simultaneous limit:

$$
f(x,y) = \begin{cases} x \sin\left(\frac{1}{y}\right), & xy \neq 0 \\ 0, & xy = 0 \end{cases}.
$$

Example 1.22 Find the iterated limits and simultaneous limit:

$$
f(x,y) = \begin{cases} x \sin\left(\frac{1}{y}\right) + y \sin\left(\frac{1}{x}\right), & xy \neq 0 \\ 0, & xy = 0 \end{cases}
$$

1.5 Continuity of a function

Definition 1.7 The function $f: D \to \mathbb{R}$; $D \subseteq \mathbb{R}^2$ is said to be continuous at a point $(a, b) \in$ D if and only if for each $\varepsilon > 0$, there exists $\delta(\varepsilon) > 0$ such that $|f(x, y) - f(a, b)| < \varepsilon$ whenever $\sqrt{(x-a)^2 + (y-b)^2} < \delta$.

That is, The function f is continuous at (a, b) if and only if

$$
\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b).
$$

A point (a, b) is said to be the point discontinuity if the function f is not continuous at (a, b) .

Example 1.23 Discuss the continuity of each of the following function:

(i)
$$
f(x,y) = \frac{x-y}{1+x+y'}
$$

(ii)
$$
g(x,y) = \frac{x-y}{1+x^2+y^2}
$$
,

(iii) $h(x, y) = \frac{3x^2y}{\sin x}$ $\frac{3x}{\sin \pi x}$.

Example 1.24 Discuss the continuity of the following function

$$
f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}
$$

Example 1.25 Investigate continuity of $f(x, y)$:

$$
f(x,y) = \begin{cases} \frac{3xy}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}
$$

Example 1.26 Investigate continuity of
$$
f(x, y)
$$
:

$$
f(x,y) = \begin{cases} \frac{\sin^2(x-y)}{|x|+|y|}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}.
$$