SOUTH EASTERN UNIVERSITY OF SRI LANKA

MTS 00033 MULTIVARIATE CALCULUS

ASSIGNMENT 1

Limits and Continuity

- 1. Find the natural domain and range of the function $f(x,y) = \frac{1}{\sqrt{4-x^2-y^2}}$
- 2. Find the domain of $f(x, y) = 8 \ln(2 + x + y^2)$.
- 3. Find the natural domain and range of the function $f(x,y) = \sqrt{x^2 + y^2 9}$.
- 4. Using ϵ , δ definition, prove each of the following:

(a)
$$\lim_{(x,y)\to(1,2)} (3xy) = 6$$
,

(b)
$$\lim_{(x,y)\to(1,1)} \left(\frac{x^2-1}{3x+y}\right) = 1.$$

- 5. Prove that if the limit $\lim_{(x,y)\to(a,b)} [f(x,y)]$ exists, then it is unique.
- 6. Evaluate each of the following limit or explain why it fails to exist:

(a)
$$\lim_{(x,y)\to(0,0)} \left(\frac{x^2\sin^2 y}{x^2+2y^2}\right)$$
,

(b)
$$\lim_{(x,y)\to(0,0)} \left(\frac{x^2}{x^2+y^2}\right)$$
,

(c)
$$\lim_{(x,y)\to(0,0)} \left(\frac{x^3 + xy^2 + 2x^2 + 2y^2}{x^2 + y^2} \right)$$
,

(d)
$$\lim_{(x,y)\to(0,0)} \left[\frac{x^2y^2}{x^2+y^2} \right]$$
,

(e)
$$\lim_{(x,y)\to(0,0)} \left(\frac{x\sin x}{x^2+y^4}\right)$$
,

(f)
$$\lim_{(x,y)\to(0,0)} \left(\frac{x\sqrt{|y|}\sin x}{x^2+y^4}\right)$$
,

(g)
$$\lim_{(x,y)\to(0,0)} \left[\frac{12x^3y^5 + 4x^4y^4}{x^6 + 4y^8} \right],$$

(h)
$$\lim_{(x,y)\to(0,0)} \left[\frac{12x^3y^4 + 4x^4y^4}{x^6 + 4y^8} \right],$$

(i)
$$\lim_{(x,y)\to(0,0)} \left[\frac{\sin(x^2+y^2)}{x^2+y^2} \right]$$
,

(j)
$$\lim_{(x,y)\to(0,0)} \left[\frac{\sin(xy)}{\sqrt{x^2+y^2}} \right]$$
,

(k)
$$\lim_{(x,y)\to(0,0)} \left[\frac{\sin(xy)}{x^2 + y^2} \right]$$
,

(l)
$$\lim_{(x,y)\to(0,0)} \left[\frac{x^3 - 2y^3}{2x^2 + 3y^2} \right]$$

(m)
$$\lim_{(x,y)\to(0,0)} \left[\frac{|x|+|y|}{x^2+5y^2} \right]$$
,

(n)
$$\lim_{(x,y)\to(0,0)} \left[\frac{\sin(xy)}{\sin x \sin y} \right]$$
,

(o)
$$\lim_{(x,y)\to(0,0)} \left[\frac{\sin(x^2+y^2)}{1-\cos\sqrt{x^2+y^2}} \right]$$
,

(p)
$$\lim_{(x,y)\to(0,0)} \left[\frac{x^2y^2}{x^2y^2 + (x-y)^2} \right]$$

(s)
$$\lim_{(x,y)\to(0,0)} \left[\frac{|x|^p |y|^q}{x^2 + y^2} \right]$$

(t)
$$\lim_{(x,y)\to(0,0)} \left[\frac{|x|^p |y|^q}{(x^2+y^2)^{3/2}} \right]$$

7. Evaluate each of the following limits or show that the limit does not exist:

(a)
$$\lim_{(x,y,z)\to(0,0,0)} \left[\frac{(x+y+z)^2}{x^2+y^2+z^2} \right]$$
, (b) $\lim_{(x,y,z)\to(1,0,0)} \left[\frac{(x+y+z)}{e^{x^2+y^2+z^2}} \right]$, (c) $\lim_{(x,y,z,t)\to(0,0)} \left[\frac{xyz}{x^2+y^2+z^2} \right]$.

8. Evaluate each of the following repeated limits:

(a)
$$\lim_{x \to 0} \left[\lim_{y \to 0} \left(\frac{x^3 - y^3}{x^3 + y^3} \right) \right]$$
 and (b) $\lim_{y \to 0} \left[\lim_{x \to 0} \left(\frac{x^3 - y^3}{x^3 + y^3} \right) \right]$,

Compare your result with

$$\lim_{(x,y)\to(0,0)} \left[\frac{x^3 - y^3}{x^3 + y^3} \right].$$

9. Evaluate each of the following repeated limits:

(a)
$$\lim_{x \to 0} \left[\lim_{y \to 0} \left(\frac{2x^2y}{x^4 + y^2} \right) \right]$$
 and (b) $\lim_{y \to 0} \left[\lim_{x \to 0} \left(\frac{2x^2y}{x^4 + y^2} \right) \right]$

Compare your result with

$$\lim_{(x,y)\to(0,0)} \left[\frac{x^3 - y^3}{x^3 + y^3} \right].$$

10. Let
$$f(x,y) = \begin{cases} xy \sin\left(\frac{1}{x^2 + y^2}\right); & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}$$
. Evaluate

(a)
$$\lim_{x \to 0} \left[\lim_{y \to 0} (f(x, y)) \right]$$
, (b) $\lim_{y \to 0} \left[\lim_{x \to 0} \left(\frac{xy}{x^2 + y^2} \right) \right]$ and (c) $\lim_{(x,y) \to (0,0)} [f(x,y)]$.

- 11. Show that the function $f(x,y) = \begin{cases} 3xy; & (x,y) \neq (2,3) \\ 6; & (x,y) \neq (2,3) \end{cases}$ has a discontinuity at (2,3). Suitably redefine the function f to make it continuous.
- 12. Does the function $f(x, y) = \frac{3x^2y}{\sin \pi x}$ has any discontinuities? Justify your answer.
- 13. Show that the function $f(x,y) = \begin{cases} \frac{2xy^2}{x^3 + y^3}; (x,y) \neq (0,0) \\ 0; (x,y) = (0,0) \end{cases}$ is discontinuous at (x,y) = (0,0).
- 14. Investigate the continuity of the function $f(x,y) = \begin{cases} \frac{x^2y^4}{(x^2+y^4)^2}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}$.
- 15. Investigate the continuity of the function $f(x,y) = \begin{cases} \frac{xy(x^2-y^2)}{x+y}; & (x,y) \neq (0,0) \\ 0; & (x,y) = (0,0) \end{cases}$.
- 16. Investigate the continuity of the function $f(x,y) = \frac{x^2 + x^3y}{x+y}$.
- 17. Let $f(x,y) = \frac{3x^2y}{x^2+y^2}$. Where is f continuous?
- 18. Examine the continuity of $\lim_{(x,y)\to(0,0)} \left[(x^2 + y^2) \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) \right]$.
- 19. Let $f(x,y) = \ln\left(\frac{3x^2 2x^2y^2 + 3y^2}{2x^2 + 2y^2}\right)$; $(x,y) \neq (0,0)$. Define f(0,0) in such a way that f to be continuous at the origin.