SOUTH EASTERN UNIVERSITY OF SRI LANKA DEPARTMENT OF MATHEMATICAL SCIENCES FACULTY OF APPLIED SCIENCES

MTM 21012 MATHEMATICAL MODELING

4. MATHEMATICAL MODELING THROUGH SECOND ORDER DIFFERENTIAL EQUATIONS

4.1 Introduction

A second order linear differential equation with constant coefficients has the form

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + c = Q(x),$$

where a, b, c are given constants with $a_2 \neq 0$.

The general solution of this equation is

y = homogeneous solution + particular integral.

Homogeneous solution:

Replace $\frac{d^r y}{dx^r}$; $0 \le r \le 2$ by λ^r and set Q(x) = 0. Then, solve the resulting auxiliary equation $a \lambda^2 + b \lambda + c = 0$.

Solve this equation for λ .

Case 1 $b^2 - 4ac > 0$. Both roots are real and distinct.

In this case, the homogeneous solution is

$$y = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x},$$

where C_1 , C_2 are arbitrary constants.

Case 2 $b^2 - 4ac = 0$. Both are real but repeated.

In this case, the homogeneous solution is

$$y = (C_1 + C_2 x) e^{\lambda x},$$

where C_1 , C_2 are arbitrary constants.

Case 3 $b^2 - 4ac < 0$. Both roots are complex conjugates of the form $\lambda = \alpha \pm i\beta$. In this case, the homogeneous solution is

 $y = e^{\alpha x} [C_1 \cos \beta x + C_2 \sin \beta x],$

where C_1 , C_2 are arbitrary constants.

Particular Solution:

Now consider the equation $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + c = Q(x)$. We shall discuss finding particular integral $y_p(x)$ only for certain class of the function Q(x) by the method of undetermined coefficients.

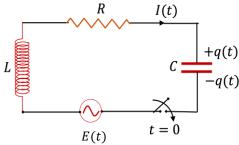
Q(x)	$y_p(x)$ guess
ae ^{ax}	Ae ^{ax}
$a \cos \alpha x$	$A\cos\alpha x + B\sin\alpha x$
$a \sin \alpha x$	$A\cos\alpha x + B\sin\alpha x$
$a\cos \alpha x + b\sin \alpha x$	$A\cos\alpha x + B\sin\alpha x$
n^{th} degree polynomial $a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$	n^{th} degree polynomial $A_0 + A_1 x + A_2 x^2 + \dots + A_n x^n$

Remark: If any term of y_p is a solution of the complementary equation, multiply y_p by x (or a suitable power of x if necessary).

4.2 A Model in Physical Sciences

Background:

Consider the situation that a inductor (coil) L, a resistor R, a capacitor C, a source of electricity (Battery / Generator) and a switch are connected in series in a closed circuit. The electric source produces a voltage E(t) volts.



Factors and variables:

Inductance	L	Henrys
Resistance	R	Ohms
Current	Ι	Ampere
Charge	q	coulomb / faraday
Time	t	seconds
Voltage	Ε	watt
Electro motive fore <i>E</i> watt		

Simplification: Definitions and Physical laws

1. Current I(t) amperes is the time rate of change of charge q coulombs. i.e.

$$I(t) = \frac{dq}{dt}.$$

2. The potential drop due to resistance *R* ohms is

$$E_R = IR = R \frac{dq}{dt}$$

3. The potential drop due to inductance *L* henrys is

$$E_L = L \frac{dI}{dt} = L \frac{d^2q}{dt^2}$$

4. The potential drop due to Capacitance C coulombs is

$$E_C = \frac{q}{c}.$$

5. Kirchhoff's Law: The algebraic sum of the voltage drops across a closed circuit is zero. i.e.

$$E_L + E_R + E_C - E = 0.$$

This gives

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{c} = E(t),$$

which is a second order linear non-homogeneous differential equation with constant coefficients.

Example 4.1 An inductor of 2 henrys, resistor of 16 ohms, and a capacitor of 0.02 farads are connected in a series with an electro motive force *E* volts. At t = 0, the charge on the capacitor and the current on the circuit are zero. Find the charge and the current at any time t > 0 if

(a) E = 300 volts,

(b) $E = 100 \sin 2t$ volts.