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4.1  Introduction 

A second order linear differential equation with constant coefficients has the form 

𝑎
𝑑2𝑦

𝑑𝑥2
+ 𝑏

𝑑𝑦

𝑑𝑥
+ 𝑐 = 𝑄(𝑥),  

where   𝑎, 𝑏, 𝑐  are given constants with  𝑎2 ≠ 0. 

 

The general solution of this equation is 

𝑦 = homogeneous solution + particular integral. 

 

Homogeneous solution: 

Replace  
𝑑𝑟𝑦

𝑑𝑥𝑟 ;   0 ≤ 𝑟 ≤ 2  by  𝜆𝑟  and set  𝑄(𝑥) = 0. Then, solve the resulting auxiliary equation 

𝑎 𝜆2 + 𝑏 𝜆 + 𝑐 = 0. 

Solve this equation for  𝜆. 

 

Case 1   𝒃𝟐 − 𝟒𝒂𝒄 > 𝟎. Both roots are real and distinct.  

In this case, the homogeneous solution is 

𝑦 = 𝐶1𝑒𝜆1𝑥 + 𝐶2𝑒𝜆2𝑥, 

where  𝐶1, 𝐶2  are arbitrary constants. 

 

Case 2   𝒃𝟐 − 𝟒𝒂𝒄 = 𝟎. Both are real but repeated.  

In this case, the homogeneous solution is 

𝑦 = (𝐶1 + 𝐶2𝑥) 𝑒𝜆𝑥 , 

where  𝐶1, 𝐶2  are arbitrary constants. 

 

Case 3   𝒃𝟐 − 𝟒𝒂𝒄 < 𝟎. Both roots are complex conjugates of the form  𝝀 = 𝜶 ± 𝒊𝜷.  

In this case, the homogeneous solution is 

𝑦 = 𝑒𝛼𝑥[𝐶1 cos 𝛽𝑥 + 𝐶2 sin 𝛽𝑥], 

where  𝐶1, 𝐶2  are arbitrary constants. 

 

Particular Solution: 
 

Now consider the equation  𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦

𝑑𝑥
+ 𝑐 = 𝑄(𝑥). We shall discuss finding particular integral  

𝑦𝑝(𝑥)  only for certain class of the function  𝑄(𝑥)  by the method of undetermined coefficients. 
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𝑸(𝒙) 𝒚𝒑(𝒙)  𝐠𝐮𝐞𝐬𝐬 

𝑎𝑒𝛼𝑥 𝐴𝑒𝛼𝑥 

𝑎 cos 𝛼𝑥 𝐴 cos 𝛼𝑥 + 𝐵 sin 𝛼𝑥 

𝑎 sin 𝛼𝑥 𝐴 cos 𝛼𝑥 + 𝐵 sin 𝛼𝑥 

𝑎 cos 𝛼𝑥 + 𝑏 sin 𝛼𝑥 𝐴 cos 𝛼𝑥 + 𝐵 sin 𝛼𝑥 

𝑛th degree polynomial 

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 

𝑛th degree polynomial 

𝐴0 + 𝐴1𝑥 + 𝐴2𝑥2 + ⋯ + 𝐴𝑛𝑥𝑛 

 

Remark: If any term of  𝑦𝑝  is a solution of the complementary equation, multiply  𝑦𝑝  by  𝑥 ( or 

a suitable power of 𝑥  if necessary). 

 

4.2 A Model in Physical Sciences 

 

Background: 

Consider the situation that a inductor (coil)  L, a resistor  R,  a capacitor  C, a source of electricity 

(Battery / Generator) and a switch are connected in series in a closed circuit. The electric source 

produces a voltage  𝐸(𝑡)  volts. 

 

 

 

 

 

Factors and variables: 

Inductance 𝐿  Henrys 

Resistance 𝑅  Ohms 

Current 𝐼   Ampere 

Charge  𝑞   coulomb / faraday 

Time  𝑡    seconds 

Voltage 𝐸  watt 

Electro motive fore 𝐸 watt 

 

Simplification: Definitions and Physical laws 

1. Current  𝐼(𝑡)  amperes is the time rate of change of charge  𝑞  coulombs. i.e. 

𝐼(𝑡) =
𝑑𝑞

𝑑𝑡
. 

2. The potential drop due to resistance  𝑅  ohms is 

𝐸𝑅 = 𝐼𝑅 = 𝑅
𝑑𝑞

𝑑𝑡
. 

3. The potential drop due to inductance  𝐿  henrys is 

𝐸𝐿 = 𝐿
𝑑𝐼

𝑑𝑡
= 𝐿

𝑑2𝑞

𝑑𝑡2
. 

     𝐸(𝑡) 
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4. The potential drop due to Capacitance  𝐶  coulombs is 

𝐸𝐶 =
𝑞

𝑐
. 

5. Kirchhoff’s Law: The algebraic sum of the voltage drops across a closed circuit is zero. 

i.e. 

𝐸𝐿 + 𝐸𝑅 + 𝐸𝐶 − 𝐸 = 0. 

This gives 

𝐿
𝑑2𝑞

𝑑𝑡2
+ 𝑅

𝑑𝑞

𝑑𝑡
+

𝑞

𝑐
= 𝐸(𝑡), 

which is a second order linear non-homogeneous differential equation with constant 

coefficients. 

 

Example 4.1 An inductor of 2 henrys, resistor of 16 ohms, and a capacitor of  0.02 farads are 

connected in a series with an electro motive force 𝐸 volts. At  𝑡 = 0, the charge on the capacitor 

and the current on the circuit are zero. Find the charge and the current at any time 𝑡 > 0 if 

(𝑎)    𝐸 = 300 volts, 

(𝑏)   𝐸 = 100 sin 2𝑡  volts. 


