MTM 21012 MATHEMATICAL MODELING

4. MATHEMATICAL MODELING THROUGH SECOND ORDER DIFFERENTIAL EQUATIONS

4.1 Introduction

A second order linear differential equation with constant coefficients has the form

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c=Q(x)
$$

where a, b, c are given constants with $a_{2} \neq 0$.
The general solution of this equation is
$y=$ homogeneous solution + particular integral.

Homogeneous solution:

Replace $\frac{d^{r} y}{d x^{r}} ; 0 \leq r \leq 2$ by λ^{r} and set $Q(x)=0$. Then, solve the resulting auxiliary equation

$$
a \lambda^{2}+b \lambda+c=0
$$

Solve this equation for λ.
Case $1 b^{2}-4 a c>0$. Both roots are real and distinct.
In this case, the homogeneous solution is

$$
y=C_{1} e^{\lambda_{1} x}+C_{2} e^{\lambda_{2} x}
$$

where C_{1}, C_{2} are arbitrary constants.

Case $2 b^{2}-4 a c=0$. Both are real but repeated.
In this case, the homogeneous solution is

$$
y=\left(C_{1}+C_{2} x\right) e^{\lambda x}
$$

where C_{1}, C_{2} are arbitrary constants.
Case $3 b^{2}-4 a c<0$. Both roots are complex conjugates of the form $\lambda=\alpha \pm i \beta$.
In this case, the homogeneous solution is

$$
y=e^{\alpha x}\left[C_{1} \cos \beta x+C_{2} \sin \beta x\right],
$$

where C_{1}, C_{2} are arbitrary constants.

Particular Solution:

Now consider the equation $a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c=Q(x)$. We shall discuss finding particular integral $y_{p}(x)$ only for certain class of the function $Q(x)$ by the method of undetermined coefficients.

$\boldsymbol{Q}(\boldsymbol{x})$	$\boldsymbol{y}_{\boldsymbol{p}}(\boldsymbol{x})$ guess
$a e^{\alpha x}$	$A e^{\alpha x}$
$a \cos \alpha x$	$A \cos \alpha x+B \sin \alpha x$
$a \sin \alpha x$	$A \cos \alpha x+B \sin \alpha x$
$a \cos \alpha x+b \sin \alpha x$	$A \cos \alpha x+B \sin \alpha x$
$n^{\text {th }}$ degree polynomial	
$a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$	$n^{\text {th }}$ degree polynomial $A_{0}+A_{1} x+A_{2} x^{2}+\cdots+A_{n} x^{n}$

Remark: If any term of y_{p} is a solution of the complementary equation, multiply y_{p} by x (or a suitable power of x if necessary).

4.2 A Model in Physical Sciences

Background:

Consider the situation that a inductor (coil) L , a resistor R , a capacitor C , a source of electricity (Battery / Generator) and a switch are connected in series in a closed circuit. The electric source produces a voltage $E(t)$ volts.

Factors and variables:

Inductance L Henrys
Resistance $\quad R$ Ohms
Current $\quad I$ Ampere
Charge $\quad q$ coulomb / faraday
Time t seconds
Voltage E watt
Electro motive fore E watt

Simplification: Definitions and Physical laws

1. Current $I(t)$ amperes is the time rate of change of charge q coulombs. i.e.

$$
I(t)=\frac{d q}{d t}
$$

2. The potential drop due to resistance R ohms is

$$
E_{R}=I R=R \frac{d q}{d t}
$$

3. The potential drop due to inductance L henrys is

$$
E_{L}=L \frac{d I}{d t}=L \frac{d^{2} q}{d t^{2}}
$$

4. The potential drop due to Capacitance C coulombs is

$$
E_{C}=\frac{q}{c} .
$$

5. Kirchhoff's Law: The algebraic sum of the voltage drops across a closed circuit is zero. i.e.

$$
E_{L}+E_{R}+E_{C}-E=0
$$

This gives

$$
L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{q}{c}=E(t)
$$

which is a second order linear non-homogeneous differential equation with constant coefficients.

Example 4.1 An inductor of 2 henrys, resistor of 16 ohms, and a capacitor of 0.02 farads are connected in a series with an electro motive force E volts. At $t=0$, the charge on the capacitor and the current on the circuit are zero. Find the charge and the current at any time $t>0$ if
(a) $E=300$ volts,
(b) $E=100 \sin 2 t$ volts.

