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MTS 00033 MULTIVARIATE CALCULUS 

 

2 PARTIAL DIFFERENTIATIONS 
 

2.1 Partial Derivatives 

 

Definition 2.1 Let  𝑓(𝑥1, 𝑥2 , 𝑥3 , …… 𝑥𝑛)  be a function of 𝑛 variables.  The derivatives of 𝑓 with 

respect to the variable  𝑥𝑖  , 1 ≤ 𝑖 ≤ 𝑛, when all others are kept constant is called the partial derivative 

of  𝑓 with respect to 𝑥𝑖  and is denoted by  
𝜕𝑓(𝑥)

𝜕𝑥𝑖
   or   𝑓𝑥𝑖

(𝑥). Simply  
𝜕𝑓

𝜕𝑥𝑖
   or   𝑓𝑥𝑖

.  That is, 

𝜕𝑓

𝜕𝑥𝑖
 =  lim

ℎ →0 

𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑖+ℎ , ⋯ , 𝑥𝑛) −  𝑓(𝑥1, 𝑥2 , ⋯ , 𝑥𝑖, ⋯ , 𝑥𝑛)

ℎ
. 

Example 2.1   Let  𝑓(𝑥, 𝑦) =  𝑥𝑦. Using the definition, find  
𝜕𝑓

𝜕𝑥
  and  

𝜕𝑓

𝜕𝑦
. 

 

Example 2.2   Let  𝑓(𝑥, 𝑦) =  𝑒𝑥 sin 𝑦. Using the definition, find    
𝜕𝑓

𝜕𝑥
  and  

𝜕𝑓

𝜕𝑦
. 

 

Example 2.3 Suppose that  𝑓(𝑥, 𝑦, 𝑧) = 𝑒𝑥𝑦 ln 𝑧. Find  𝑓𝑥, 𝑓𝑦, 𝑓𝑧  and show that  𝑥𝑓𝑥 = 𝑦𝑓𝑦. 

 

Example 2.4    Let  𝑓 (𝑥, 𝑦) =  {

𝑥𝑦

𝑥2+ 𝑦2                    ; (𝑥, 𝑦)  ≠ (0,0)

0                            ; (𝑥, 𝑦)  = (0,0 )
 .  Find    

𝜕𝑓

𝜕𝑥
  and  

𝜕𝑓

𝜕𝑦
. 

 

Remark 2.1 Recall that for a function  of single variables   

• If 𝑓′ exists, then  𝑓  is continuous. But the converse is not true. i.e. if the function is continuous, 

it need not to be differentiable. For example,  𝑓(𝑥) = |𝑥|  is continuous at the origin, but 

differentiable there at. 
 

• If 𝑓 is not continuous, then 𝑓 is not differentiable.  

However, In the case of function of several variables, partial derivatives may exist though function 

is not continuous. 

In the example 2.4, 𝑓 is not continuous at origin but 𝑓𝑥(0,0) =  𝑓𝑦(0,0) = 0 

 

 

2.2 Directional Derivatives 

The partial derivative  𝑓𝑥(𝑥, 𝑦)  gives the rate of change of  𝑓 with respect to 𝑥 (𝑦 constant). Similarly,  

𝑓𝑦(𝑥, 𝑦)  measures the rate of change of  𝑓 with respect to 𝑦 (𝑥 constant). If both 𝑥 and 𝑦 changes 

simultaneously, then how to find the rate of change? 

 

Definition 2.2   The rate of change of the function   𝑓(𝑥) in the direction with the unit vector  𝑢̂ =  𝑎     

is called the directional derivative and is denoted by    𝒟 𝑢𝑓(𝑥). i.e. 

𝒟 𝑢𝑓 = lim
ℎ →0 

𝑓(𝑥1 + 𝑎1ℎ1 , 𝑥2 + 𝑎2ℎ2 , … , 𝑥𝑛 + 𝑎𝑛ℎ𝑛) − 𝑓(𝑥1,   𝑥2,… 𝑥𝑛
)

ℎ
, 

provided the limit exists. 
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Note: The directional derivative of 𝑓(𝑥, 𝑦) at the point (𝑥0, 𝑦0) in the direction of positive 𝑋 axis: 

We know that   𝑢̂ = 𝑖 = (1,0). Thus 

𝒟𝑖𝑓(𝑥0, 𝑦0) = lim
ℎ →0 

𝑓(𝑥0 + ℎ1 , 𝑦0) − 𝑓(𝑥0, 𝑦0)

ℎ
= 𝑓𝑥(𝑥0, 𝑦0). 

Similarly, we get  𝒟𝑗𝑓(𝑥0, 𝑦0) = 𝑓𝑦(𝑥0, 𝑦0). 

 

Theorem 2.1   Suppose that  𝑓(𝑥)  is a function whose first order partial derivatives exist. The 

directional derivative of  𝑓  in the direction of  𝑢̂ =  𝑎   is given by 

𝒟 𝑢𝑓 =  
𝜕𝑓

𝜕𝑥1
𝑎1 + 

𝜕𝑓

𝜕𝑥2
 𝑎2 + ⋯+ 

𝜕𝑓

𝜕𝑥𝑛
 𝑎𝑛 

= (
𝜕𝑓

𝜕𝑥1
 ,

𝜕𝑓

𝜕𝑥2
. . . .,

𝜕𝑓

𝜕𝑥𝑛
) . (𝑎1, 𝑎2, … , 𝑎𝑛) 

= ∇ 𝑓. 𝑎 

Note:  ∇ 𝑓 = (
𝜕𝑓

𝜕𝑥1
 ,

𝜕𝑓

𝜕𝑥2
. . . .,

𝜕𝑓

𝜕𝑥𝑛
)  is the gradient of the vector of the scalar function  𝑓(𝑥). 

 

Example 2.5 Find the directional derivatives of  𝑓(𝑥, 𝑦) = 𝑥𝑒𝑥𝑦 + 𝑦  in the direction 𝜃 =  
2𝜋

3
  at the 

point (2,3). 

 

Theorem 2.2 Let  𝑓(𝑥)  be a function whose first order partial derivatives exist and let  𝑃  be a point 

in the domain of  𝑓. The maximum rate of change of function  𝑓(𝑥) is given by  ‖∇ 𝑓(𝑥) ‖  and that 

will occur in the direction of  ∇ 𝑓(𝑥) 

Proof:  Let  𝜃  be the angle between  ∇ 𝑓  and  𝑢̂ 

𝒟 𝑢𝑓 =   ∇ 𝑓 ∙  𝑢̂   

.          = ‖∇ 𝑓 ‖ ‖𝑢̂  ‖ cos 𝜃     

          =  ‖∇ 𝑓 ‖ cos 𝜃     

 ∴   𝒟 𝑢𝑓  is maximum when cos 𝜃 = 1 (𝑖. 𝑒.  at  𝜃 = 0). 

Therefore,  (𝒟 𝑢𝑓)𝑚𝑎𝑥 = ‖∇ 𝑓 ‖. 

Further, 𝜃 = 0  ⟹ 𝑢̂  is in the direction of  ∇ 𝑓. 

 

Example 2.6 Let  𝑓(𝑥, 𝑦) = 𝑥𝑒𝑦 defined on  ℝ2 and let  𝑃 ≡ (2, 0), 𝑄 ≡ (
1

2
, 2)  be two points on  

ℝ2. 

(i) Find the rate of change of  𝑓  at  𝑃  in the direction of  𝑃𝑄⃗⃗⃗⃗  ⃗. 

(ii) In which direction does  f  have the maximum rate of change and what is the value of 

maximum rate of change. 

 

2.3 Tangent Planes of Level Surfaces 
 

Let  𝑓(𝑥, 𝑦)  be a function of two variable. The graph of  𝑓  is a surface in  ℝ3  with the equation 𝑧 =

𝑓(𝑥, 𝑦). 
 

Let  𝑟(𝑥, 𝑦) = (𝑥, 𝑦, 𝑧) = (𝑥, 𝑦, 𝑓)  be a point on the surface. Then, 

𝜕𝑟

𝜕𝑥
= (1, 0, 𝑓𝑥),

𝜕𝑟

𝜕𝑦
= (0, 1, 𝑓𝑦) . 
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The surface normal vector at the point  𝑃0(𝑥0, 𝑦0, 𝑧0) on the surface is 

𝑛 = [
𝜕𝑟

𝜕𝑥
×

𝜕𝑟

𝜕𝑦
]
(𝑥0,𝑦0)

= |

𝑖 𝑗 𝑘

1 0 𝑓𝑥
0 1  𝑓𝑦

| = (−𝑓𝑥(𝑥0, 𝑦0), −𝑓𝑦(𝑥0, 𝑦0), 1). 

Let  𝑃(𝑥, 𝑦, 𝑧)  be an arbitrary point on the surface. Equation of tangent plane at  𝑃0(𝑥0, 𝑦0, 𝑧0) on the 

surface is 

𝑃𝑃0
⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∙ 𝑛 = 0. 

⟹   (

𝑥 − 𝑥0

𝑦 − 𝑦0

𝑧 − 𝑧0

) ∙ (
−𝑓𝑥(𝑥0, 𝑦0)

−𝑓𝑦(𝑥0, 𝑦0)

1

) = 0 

⟹   −𝑓𝑥(𝑥0, 𝑦0)(𝑥 − 𝑥0) − 𝑓𝑦(𝑥0, 𝑦0)(𝑦 − 𝑦0) + (𝑧 − 𝑧0) = 0 

 

⟹    𝑧 = 𝑧0 + (𝑥 − 𝑥0)𝑓𝑥(𝑥0, 𝑦0) + (𝑦 − 𝑦0)𝑓𝑦(𝑥0, 𝑦0). 

 

Definition 2.3  Consider the implicit function  𝐹(𝑥, 𝑦, 𝑧) = 𝐶, where  𝐶  is an arbitrary constant. For 

each value of  𝐶, these represents a family of surfaces, called level surfaces. 

 

We may take  𝐹(𝑥, 𝑦, 𝑧) − 𝐶 = 𝑧 − 𝑓(𝑥, 𝑦) = 0. Then, 

𝜕𝐹

𝜕𝑥
= −𝑓𝑥,

𝜕𝐹

𝜕𝑦
= −𝑓𝑦,

𝜕𝐹

𝜕𝑧
= 1. 

Therefore,  ∇𝐹 = (
𝜕𝐹

𝜕𝑥
,

𝜕𝐹

𝜕𝑦
,

𝜕𝐹

𝜕𝑧
) = (−𝑓𝑥, −𝑓𝑦, 1). 

Hence the tangent plane for the level surface is 

(

𝑥 − 𝑥0

𝑦 − 𝑦0

𝑧 − 𝑧0

) ∙ ∇𝐹 = 0. 

This shows that  ∇𝐹  is a vector perpendicular to the tangent plane. The unit surface normal vector to 

the level surface  𝐹(𝑥, 𝑦, 𝑧) = 𝐶  is  
∇𝐹

‖∇𝐹‖
. 

 

Example 2.7 Find the equation of the tangent plane to the elliptic paraboloid  𝑧 = 2𝑥2 + 𝑦2  at 

the point  (1, 1, 3). 

 

Example 2.8 Find the equation of the tangent plane and surface normal to the ellipsoid  
𝑥2

4
+ 𝑦2 +

𝑧2

9
= 3  at the point  (−2, 1, 3). 

 

2.4 Higher Order Partial Derivatives 

𝜕2𝑓

𝜕𝑥2
= 

𝜕

𝜕𝑥
(
𝜕𝑓

𝜕𝑥
)  =  

𝜕

𝜕𝑦
(𝑓𝑥)  =  𝑓𝑥𝑥  

𝜕2𝑓

𝜕𝑥𝜕𝑦
=  

𝜕

𝜕𝑥
(
𝜕𝑓

𝜕𝑦
)  =   𝑓𝑦𝑥                        

 
𝜕2𝑓

𝜕𝑦𝜕𝑥
=

𝜕

𝜕𝑦
(
𝜕𝑓

𝜕𝑥
) =  𝑓𝑥𝑦                                                         
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𝜕2𝑓

𝜕𝑦2
= 

𝜕

𝜕𝑦
(
𝜕𝑓

𝜕𝑦
) =  𝑓𝑦𝑦                                              

Other higher order derivatives are similarly defined.  

 

Example 2.9 Suppose that 

𝑓(𝑥, 𝑦) =  {
𝑥𝑦 

(𝑥2 − 𝑦2)

(𝑥2 + 𝑦2)
                ; (𝑥, 𝑦)  ≠ (0, 0) 

0                                      ; (𝑥, 𝑦) = (0,0)

. 

Show that  𝑓𝑥𝑦(0,0)  ≠  𝑓𝑦𝑥  (0,0). 

 

Sufficient condition for the equality of  𝒇𝒙𝒚 𝐚𝐧𝐝  𝒇𝒚𝒙  
 

Theorem 2.3 Let (𝑎, 𝑏) be a point in the domain of the function of the function  𝑓(𝑥, 𝑦).  If   𝑓𝑦 exist 

in the neighborhood of  (𝑎, 𝑏) and 𝑓𝑦𝑥  is continuous at (𝑎, 𝑏) then  𝑓𝑥𝑦 exist and equal to  𝑓𝑦𝑥. 
 

Remark: The condition stated in the theorem 2.3 are sufficient but not necessary. i.e. If the 

conditions are not satisfied then  𝑓𝑥𝑦  , 𝑓𝑦𝑥    may or may not equal. 

 

Example 2.10  Let 

𝑓(𝑥, 𝑦) =  {
 
(𝑥2 𝑦2)

𝑥2 + 𝑦2
                ; (𝑥, 𝑦)  ≠ (0, 0) 

0                                      ; (𝑥, 𝑦) = (0,0)

. 

Show that  𝑓𝑥𝑦(0,0) =  𝑓𝑦𝑥  (0,0). 

 

Solution: Home work. 
 

During the process, we show that  𝑓𝑦(0,0) = 0. 

To show  𝑓𝑦𝑥  is not continuous at the origin at (𝑥, 𝑦)  ≠ (0,0). 

𝑓𝑦 =  
(𝑥2 + 𝑦2). 2𝑥𝑦2 − 𝑥2 𝑦2. 2𝑥  

(𝑥2 + 𝑦2)2
= 

2𝑥𝑦4

(𝑥2 + 𝑦2)2
  

𝑓𝑦 = {
 

2𝑥 𝑦4)

(𝑥2 + 𝑦2)2
                ; (𝑥, 𝑦)  ≠ (0, 0) 

0                                      ; (𝑥, 𝑦) = (0,0)

 

𝑓𝑥𝑦 = 
8𝑥3𝑦3

(𝑥2 + 𝑦2)3
          ; (𝑥, 𝑦)  ≠ (0, 0)  

Along the 𝑥 – axis, 

lim
𝑥 →0 

𝑓𝑦𝑥 (𝑥, 0) = 0. 

Along the line 𝑦 =  𝑥,    

lim
(𝑥 ,𝑦)→(0,0) 

𝑓𝑦𝑥 (𝑥, 𝑦) =  lim
(𝑥,𝑦) →(0,0) 

8𝑥6

8𝑥6
= 1. 

Therefore, lim
(𝑥,𝑦) →(0 ,0)

𝑓𝑦𝑥   does not exist which gives 

lim
(𝑥,𝑦)→(0 ,0)

𝑓𝑦𝑥  ≠   𝑓𝑦𝑥 (0,0). 

Hence  𝑓𝑦𝑥   is not continuous. 

• We proved 𝑓𝑥𝑦(0,0) =  𝑓𝑦𝑥 (0,0) , but condition is not satisfied. 


