MTS 00033 MULTIVARIATE CALCULUS

2 PARTIAL DIFFERENTIATIONS

2.1 Partial Derivatives

Definition 2.1 Let $f\left(x_{1}, x_{2}, x_{3}, \ldots \ldots x_{n}\right)$ be a function of n variables. The derivatives of f with respect to the variable $x_{i}, 1 \leq i \leq n$, when all others are kept constant is called the partial derivative of f with respect to x_{i} and is denoted by $\frac{\partial f(\underline{x})}{\partial x_{i}}$ or $f_{x_{i}}(\underline{x})$. Simply $\frac{\partial f}{\partial x_{i}}$ or $f_{x_{i}}$. That is,

$$
\frac{\partial f}{\partial x_{i}}=\lim _{h \rightarrow 0} \frac{f\left(x_{1}, x_{2}, \cdots, x_{i+h}, \cdots, x_{n}\right)-f\left(x_{1}, x_{2}, \cdots, x_{i}, \cdots, x_{n}\right)}{h}
$$

Example 2.1 Let $f(x, y)=x y$. Using the definition, find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.
Example 2.2 Let $f(x, y)=e^{x} \sin y$. Using the definition, find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

Example 2.3 Suppose that $f(x, y, z)=e^{x y} \ln z$. Find f_{x}, f_{y}, f_{z} and show that $x f_{x}=y f_{y}$.

Example 2.4 Let $f(x, y)=\left\{\begin{array}{ll}\frac{x y}{x^{2}+y^{2}} & ;(x, y) \neq(0,0) \\ 0 & ;(x, y)=(0,0)\end{array}\right.$. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

Remark 2.1 Recall that for a function of single variables

- If f^{\prime} exists, then f is continuous. But the converse is not true. i.e. if the function is continuous, it need not to be differentiable. For example, $f(x)=|x|$ is continuous at the origin, but differentiable there at.
- If f is not continuous, then f is not differentiable.

However, In the case of function of several variables, partial derivatives may exist though function is not continuous.

In the example 2.4, f is not continuous at origin but $f_{x}(0,0)=f_{y}(0,0)=0$

2.2 Directional Derivatives

The partial derivative $f_{x}(x, y)$ gives the rate of change of f with respect to x (y constant). Similarly, $f_{y}(x, y)$ measures the rate of change of f with respect to y (x constant). If both x and y changes simultaneously, then how to find the rate of change?

Definition 2.2 The rate of change of the function $f(\underline{x})$ in the direction with the unit vector $\underline{\hat{u}}=\underline{a}$ is called the directional derivative and is denoted by $\mathcal{D}_{\underline{\hat{u}}} f(\underline{x})$. i.e.

$$
\mathcal{D}_{\underline{\underline{u}}} f=\lim _{h \rightarrow 0} \frac{f\left(x_{1}+a_{1} h_{1}, x_{2}+a_{2} h_{2}, \ldots, x_{n}+a_{n} h_{n}\right)-f\left(x_{1}, x_{2, \ldots x_{n}}\right)}{h}
$$

provided the limit exists.

Note: The directional derivative of $f(x, y)$ at the point $\left(x_{0}, y_{0}\right)$ in the direction of positive X axis: We know that $\underline{\hat{u}}=\underline{i}=(1,0)$. Thus

$$
\mathcal{D}_{\underline{i}} f\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h_{1}, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h}=f_{x}\left(x_{0}, y_{0}\right)
$$

Similarly, we get $\mathcal{D}_{\underline{j}} f\left(x_{0}, y_{0}\right)=f_{y}\left(x_{0}, y_{0}\right)$.

Theorem 2.1 Suppose that $f(\underline{x})$ is a function whose first order partial derivatives exist. The directional derivative of f in the direction of $\underline{\hat{u}}=\underline{a}$ is given by

$$
\begin{aligned}
\mathcal{D}_{\underline{\hat{u}}} f & =\frac{\partial f}{\partial x_{1}} a_{1}+\frac{\partial f}{\partial x_{2}} a_{2}+\cdots+\frac{\partial f}{\partial x_{n}} a_{n} \\
& =\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}} \cdots, \quad \frac{\partial f}{\partial x_{n}}\right) \cdot\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
& =\nabla f \cdot \underline{a}
\end{aligned}
$$

Note: $\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}} \ldots, \frac{\partial f}{\partial x_{n}}\right)$ is the gradient of the vector of the scalar function $f(\underline{x})$.
Example 2.5 Find the directional derivatives of $f(x, y)=x e^{x y}+y$ in the direction $\theta=\frac{2 \pi}{3}$ at the point $(2,3)$.

Theorem 2.2 Let $f(\underline{x})$ be a function whose first order partial derivatives exist and let P be a point in the domain of f. The maximum rate of change of function $f(\underline{x})$ is given by $\|\nabla f(\underline{x})\|$ and that will occur in the direction of $\nabla f(\underline{x})$
Proof: \quad Let θ be the angle between ∇f and $\underline{\hat{u}}$
$\mathcal{D}_{\underline{\hat{u}}} f=\nabla f \cdot \underline{\hat{u}}$

- $\quad=\|\nabla f\|\|\underline{\hat{u}}\| \cos \theta$
$=\|\nabla f\| \cos \theta$
$\therefore \mathcal{D}_{\underline{\hat{u}}} f$ is maximum when $\cos \theta=1$ (i.e. at $\theta=0$).
Therefore, $\left(\mathcal{D}_{\underline{\underline{u}}} f\right)_{\max }=\|\nabla f\|$.
Further, $\theta=0 \Rightarrow \underline{\hat{u}}$ is in the direction of ∇f.
Example 2.6 Let $f(x, y)=x e^{y}$ defined on \mathbb{R}^{2} and let $P \equiv(2,0), Q \equiv\left(\frac{1}{2}, 2\right)$ be two points on \mathbb{R}^{2}.
(i) Find the rate of change of f at P in the direction of $\overrightarrow{P Q}$.
(ii) In which direction does f have the maximum rate of change and what is the value of maximum rate of change.

2.3 Tangent Planes of Level Surfaces

Let $f(x, y)$ be a function of two variable. The graph of f is a surface in \mathbb{R}^{3} with the equation $z=$ $f(x, y)$.

Let $\underline{r}(x, y)=(x, y, z)=(x, y, f)$ be a point on the surface. Then,

$$
\frac{\partial \underline{r}}{\partial x}=\left(1,0, f_{x}\right), \quad \frac{\partial \underline{r}}{\partial y}=\left(0,1, f_{y}\right) .
$$

The surface normal vector at the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ on the surface is

$$
\underline{n}=\left[\frac{\partial \underline{r}}{\partial x} \times \frac{\partial \underline{r}}{\partial y}\right]_{\left(x_{0}, y_{0}\right)}=\left|\begin{array}{ccc}
\underline{i} & \underline{j} & \frac{k}{1} \\
1 & 0 & f_{x} \\
0 & 1 & f_{y}
\end{array}\right|=\left(-f_{x}\left(x_{0}, y_{0}\right),-f_{y}\left(x_{0}, y_{0}\right), 1\right)
$$

Let $P(x, y, z)$ be an arbitrary point on the surface. Equation of tangent plane at $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ on the surface is

$$
\begin{aligned}
& \overrightarrow{P P_{0}} \cdot \underline{n}=0 . \\
& \Rightarrow\left(\begin{array}{l}
x-x_{0} \\
y-y_{0} \\
z-z_{0}
\end{array}\right) \cdot\left(\begin{array}{c}
-f_{x}\left(x_{0}, y_{0}\right) \\
-f_{y}\left(x_{0}, y_{0}\right) \\
1
\end{array}\right)=0 \\
& \Rightarrow \quad-f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)-f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)+\left(z-z_{0}\right)=0 \\
& \Rightarrow \quad z=z_{0}+\left(x-x_{0}\right) f_{x}\left(x_{0}, y_{0}\right)+\left(y-y_{0}\right) f_{y}\left(x_{0}, y_{0}\right) .
\end{aligned}
$$

Definition 2.3 Consider the implicit function $F(x, y, z)=C$, where C is an arbitrary constant. For each value of C, these represents a family of surfaces, called level surfaces.

We may take $F(x, y, z)-C=z-f(x, y)=0$. Then,

$$
\frac{\partial F}{\partial x}=-f_{x}, \quad \frac{\partial F}{\partial y}=-f_{y}, \quad \frac{\partial F}{\partial z}=1 .
$$

Therefore, $\nabla F=\left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right)=\left(-f_{x},-f_{y}, 1\right)$.
Hence the tangent plane for the level surface is

$$
\left(\begin{array}{l}
x-x_{0} \\
y-y_{0} \\
z-z_{0}
\end{array}\right) \cdot \nabla F=0 .
$$

This shows that ∇F is a vector perpendicular to the tangent plane. The unit surface normal vector to the level surface $F(x, y, z)=C$ is $\frac{\nabla F}{\|\nabla F\|}$.

Example 2.7 Find the equation of the tangent plane to the elliptic paraboloid $z=2 x^{2}+y^{2}$ at the point $(1,1,3)$.

Example 2.8 Find the equation of the tangent plane and surface normal to the ellipsoid $\frac{x^{2}}{4}+y^{2}+$ $\frac{z^{2}}{9}=3$ at the point $(-2,1,3)$.

2.4 Higher Order Partial Derivatives

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x^{2}} & =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial y}\left(f_{x}\right)=f_{x x} \\
\frac{\partial^{2} f}{\partial x \partial y} & =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=f_{y x} \\
\frac{\partial^{2} f}{\partial y \partial x} & =\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=f_{x y}
\end{aligned}
$$

$$
\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)=f_{y y}
$$

Other higher order derivatives are similarly defined.
Example 2.9 Suppose that

$$
f(x, y)= \begin{cases}x y \frac{\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)} & ;(x, y) \neq(0,0) \\ 0 & ;(x, y)=(0,0)\end{cases}
$$

Show that $f_{x y}(0,0) \neq f_{y x}(0,0)$.

Sufficient condition for the equality of $\boldsymbol{f}_{\boldsymbol{x} \boldsymbol{y}}$ and $\boldsymbol{f}_{\boldsymbol{y} \boldsymbol{x}}$
Theorem 2.3 Let (a, b) be a point in the domain of the function of the function $f(x, y)$. If f_{y} exist in the neighborhood of (a, b) and $f_{y x}$ is continuous at (a, b) then $f_{x y}$ exist and equal to $f_{y x}$.

Remark: The condition stated in the theorem 2.3 are sufficient but not necessary. i.e. If the conditions are not satisfied then $f_{x y}, f_{y x}$ may or may not equal.

Example 2.10 Let

$$
f(x, y)= \begin{cases}\frac{\left(x^{2} y^{2}\right)}{x^{2}+y^{2}} & ;(x, y) \neq(0,0) \\ 0 & ;(x, y)=(0,0)\end{cases}
$$

Show that $f_{x y}(0,0)=f_{y x}(0,0)$.

Solution: Home work.

During the process, we show that $f_{y}(0,0)=0$.
To show $f_{y x}$ is not continuous at the origin at $(x, y) \neq(0,0)$.

$$
\begin{aligned}
& f_{y}=\frac{\left(x^{2}+y^{2}\right) \cdot 2 x y^{2}-x^{2} y^{2} \cdot 2 x}{\left(x^{2}+y^{2}\right)^{2}}=\frac{2 x y^{4}}{\left(x^{2}+y^{2}\right)^{2}} \\
& f_{y}= \begin{cases}\frac{\left.2 x y^{4}\right)}{\left(x^{2}+y^{2}\right)^{2}} & ;(x, y) \neq(0,0) \\
0 & ;(x, y)=(0,0)\end{cases} \\
& f_{x y}=\frac{8 x^{3} y^{3}}{\left(x^{2}+y^{2}\right)^{3}} \quad ;(x, y) \neq(0,0)
\end{aligned}
$$

Along the x-axis,

$$
\lim _{x \rightarrow 0} f_{y x}(x, 0)=0
$$

Along the line $y=x$,

$$
\lim _{(x, y) \rightarrow(0,0)} f_{y x}(x, y)=\lim _{(x, y) \rightarrow(0,0)} \frac{8 x^{6}}{8 x^{6}}=1 .
$$

Therefore, $\lim _{(x, y) \rightarrow(0,0)} f_{y x}$ does not exist which gives

$$
\lim _{(x, y) \rightarrow(0,0)} f_{y x} \neq f_{y x}(0,0)
$$

Hence $f_{y x}$ is not continuous.

- We proved $f_{x y}(0,0)=f_{y x}(0,0)$, but condition is not satisfied.

