MTS 00033 MULTIVARIATE CALCULUS

2 PARTIAL DIFFERENTIATIONS

2.1 Partial Derivatives

Definition 2.1 Let $f(x_1, x_2, x_3, \dots, x_n)$ be a function of *n* variables. The derivatives of *f* with respect to the variable x_i , $1 \le i \le n$, when all others are kept constant is called the partial derivative of *f* with respect to x_i and is denoted by $\frac{\partial f(x)}{\partial x_i}$ or $f_{x_i}(\underline{x})$. Simply $\frac{\partial f}{\partial x_i}$ or f_{x_i} . That is,

$$\frac{\partial f}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, x_2, \cdots, x_{i+h}, \cdots, x_n) - f(x_1, x_2, \cdots, x_i, \cdots, x_n)}{h}.$$

Example 2.1 Let f(x, y) = xy. Using the definition, find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

Example 2.2 Let $f(x, y) = e^x \sin y$. Using the definition, find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

Example 2.3 Suppose that $f(x, y, z) = e^{xy} \ln z$. Find f_x , f_y , f_z and show that $xf_x = yf_y$.

Example 2.4 Let
$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & ; (x,y) \neq (0,0) \\ 0 & ; (x,y) = (0,0) \end{cases}$$
. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

Remark 2.1 Recall that for a function of single variables

- If f' exists, then f is continuous. But the converse is not true. i.e. if the function is continuous, it need not to be differentiable. For example, f(x) = |x| is continuous at the origin, but differentiable there at.
- If *f* is not continuous, then *f* is not differentiable.

However, In the case of function of several variables, partial derivatives may exist though function is not continuous.

In the example 2.4, f is not continuous at origin but $f_x(0,0) = f_y(0,0) = 0$

2.2 Directional Derivatives

The partial derivative $f_x(x, y)$ gives the rate of change of f with respect to x (y constant). Similarly, $f_y(x, y)$ measures the rate of change of f with respect to y (x constant). If both x and y changes simultaneously, then how to find the rate of change?

Definition 2.2 The rate of change of the function $f(\underline{x})$ in the direction with the <u>unit</u> vector $\underline{\hat{u}} = \underline{a}$ is called the directional derivative and is denoted by $\mathcal{D}_{\hat{u}}f(\underline{x})$. i.e.

$$\mathcal{D}_{\underline{\hat{u}}}f = \lim_{h \to 0} \frac{f(x_1 + a_1h_1, x_2 + a_2h_2, \dots, x_n + a_nh_n) - f(x_1, x_{2,\dots, x_n})}{h},$$

provided the limit exists.

Note: The directional derivative of f(x, y) at the point (x_0, y_0) in the direction of positive *X* axis: We know that $\underline{\hat{u}} = \underline{i} = (1,0)$. Thus

$$\mathcal{D}_{\underline{i}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + h_1, y_0) - f(x_0, y_0)}{h} = f_x(x_0, y_0).$$

Similarly, we get $\mathcal{D}_{\underline{j}}f(x_0, y_0) = f_y(x_0, y_0).$

Theorem 2.1 Suppose that $f(\underline{x})$ is a function whose first order partial derivatives exist. The directional derivative of f in the direction of $\underline{\hat{u}} = \underline{a}$ is given by

$$\mathcal{D}_{\underline{\hat{u}}}f = \frac{\partial f}{\partial x_1}a_1 + \frac{\partial f}{\partial x_2}a_2 + \dots + \frac{\partial f}{\partial x_n}a_n$$
$$= \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right) \cdot (a_1, a_2, \dots, a_n)$$
$$= \nabla f \cdot \underline{a}$$

Note: $\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right)$ is the gradient of the vector of the scalar function $f(\underline{x})$.

Example 2.5 Find the directional derivatives of $f(x, y) = xe^{xy} + y$ in the direction $\theta = \frac{2\pi}{3}$ at the point (2,3).

Theorem 2.2 Let $f(\underline{x})$ be a function whose first order partial derivatives exist and let *P* be a point in the domain of *f*. The maximum rate of change of function $f(\underline{x})$ is given by $\|\nabla f(\underline{x})\|$ and that will occur in the direction of $\nabla f(\underline{x})$

Proof: Let θ be the angle between ∇f and $\underline{\hat{u}}$ $\mathcal{D}_{\underline{\hat{u}}}f = \nabla f \cdot \underline{\hat{u}}$ $\cdot = \|\nabla f \| \|\underline{\hat{u}}\| \cos \theta$ $= \|\nabla f \| \cos \theta$ $\therefore \mathcal{D}_{\underline{\hat{u}}}f$ is maximum when $\cos \theta = 1$ (*i.e.* at $\theta = 0$).

Therefore, $(\mathcal{D}_{\underline{\hat{u}}}f)_{max} = \|\nabla f\|.$

Further, $\theta = 0 \implies \underline{\hat{u}}$ is in the direction of ∇f .

Example 2.6 Let $f(x, y) = xe^{y}$ defined on \mathbb{R}^{2} and let $P \equiv (2, 0)$, $Q \equiv (\frac{1}{2}, 2)$ be two points on \mathbb{R}^{2} .

(i) Find the rate of change of f at P in the direction of \overrightarrow{PQ} .

(ii) In which direction does f have the maximum rate of change and what is the value of maximum rate of change.

2.3 Tangent Planes of Level Surfaces

Let f(x, y) be a function of two variable. The graph of f is a surface in \mathbb{R}^3 with the equation z = f(x, y).

Let $\underline{r}(x, y) = (x, y, z) = (x, y, f)$ be a point on the surface. Then,

$$\frac{\partial \underline{r}}{\partial x} = (1, 0, f_x), \qquad \frac{\partial \underline{r}}{\partial y} = (0, 1, f_y).$$

The surface normal vector at the point $P_0(x_0, y_0, z_0)$ on the surface is

$$\underline{n} = \begin{bmatrix} \frac{\partial r}{\partial x} \times \frac{\partial r}{\partial y} \end{bmatrix}_{(x_0, y_0)} = \begin{vmatrix} \underline{i} & \underline{j} & \underline{k} \\ 1 & 0 & f_x \\ 0 & 1 & f_y \end{vmatrix} = \left(-f_x(x_0, y_0), -f_y(x_0, y_0), 1 \right).$$

Let P(x, y, z) be an arbitrary point on the surface. Equation of tangent plane at $P_0(x_0, y_0, z_0)$ on the surface is

$$\overrightarrow{PP_{0}} \cdot \underline{n} = 0.$$

$$\Rightarrow \begin{pmatrix} x - x_{0} \\ y - y_{0} \\ z - z_{0} \end{pmatrix} \cdot \begin{pmatrix} -f_{x}(x_{0}, y_{0}) \\ -f_{y}(x_{0}, y_{0}) \\ 1 \end{pmatrix} = 0$$

$$\Rightarrow -f_{x}(x_{0}, y_{0})(x - x_{0}) - f_{y}(x_{0}, y_{0})(y - y_{0}) + (z - z_{0}) = 0$$

$$\Rightarrow z = z_{0} + (x - x_{0})f_{x}(x_{0}, y_{0}) + (y - y_{0})f_{y}(x_{0}, y_{0}).$$

Definition 2.3 Consider the implicit function F(x, y, z) = C, where C is an arbitrary constant. For each value of C, these represents a family of surfaces, called level surfaces.

We may take F(x, y, z) - C = z - f(x, y) = 0. Then,

$$\frac{\partial F}{\partial x} = -f_x, \qquad \frac{\partial F}{\partial y} = -f_y, \qquad \frac{\partial F}{\partial z} = 1.$$

Therefore, $\nabla F = \left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}\right) = \left(-f_x, -f_y, 1\right).$

Hence the tangent plane for the level surface is

$$\begin{pmatrix} x - x_0 \\ y - y_0 \\ z - z_0 \end{pmatrix} \cdot \nabla F = 0.$$

This shows that ∇F is a vector perpendicular to the tangent plane. The unit surface normal vector to the level surface F(x, y, z) = C is $\frac{\nabla F}{\|\nabla F\|}$.

Example 2.7 Find the equation of the tangent plane to the elliptic paraboloid $z = 2x^2 + y^2$ at the point (1, 1, 3).

Example 2.8 Find the equation of the tangent plane and surface normal to the ellipsoid $\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3$ at the point (-2, 1, 3).

2.4 Higher Order Partial Derivatives

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial}{\partial y} (f_x) = f_{xx}$$
$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = f_{yx}$$
$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = f_{xy}$$

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = f_{yy}$$

Other higher order derivatives are similarly defined.

Example 2.9 Suppose that

$$f(x,y) = \begin{cases} xy \frac{(x^2 - y^2)}{(x^2 + y^2)} & ; (x,y) \neq (0,0) \\ 0 & ; (x,y) = (0,0) \end{cases}$$

Show that $f_{xy}(0,0) \neq f_{yx}(0,0)$.

Sufficient condition for the equality of f_{xy} and f_{yx}

Theorem 2.3 Let (a, b) be a point in the domain of the function of the function f(x, y). If f_y exist in the neighborhood of (a, b) and f_{yx} is continuous at (a, b) then f_{xy} exist and equal to f_{yx} .

Remark: The condition stated in the theorem 2.3 are sufficient but not necessary. i.e. If the conditions are not satisfied then f_{xy} , f_{yx} may or may not equal.

Example 2.10 Let

$$f(x,y) = \begin{cases} \frac{(x^2 y^2)}{x^2 + y^2} & ; (x,y) \neq (0,0) \\ 0 & ; (x,y) = (0,0) \end{cases}$$

Show that $f_{xy}(0,0) = f_{yx}(0,0)$.

Solution: Home work.

During the process, we show that $f_y(0,0) = 0$. To show f_{yx} is not continuous at the origin at $(x, y) \neq (0,0)$.

$$f_{y} = \frac{(x^{2} + y^{2}) \cdot 2xy^{2} - x^{2} y^{2} \cdot 2x}{(x^{2} + y^{2})^{2}} = \frac{2xy^{4}}{(x^{2} + y^{2})^{2}}$$
$$f_{y} = \begin{cases} \frac{2x y^{4}}{(x^{2} + y^{2})^{2}} & ; (x, y) \neq (0, 0) \\ 0 & ; (x, y) = (0, 0) \end{cases}$$
$$f_{xy} = \frac{8x^{3}y^{3}}{(x^{2} + y^{2})^{3}} & ; (x, y) \neq (0, 0) \end{cases}$$

Along the x – axis,

$$\lim_{x\to 0}\,f_{yx}\,(x,0)=0.$$

Along the line y = x,

$$\lim_{(x,y)\to(0,0)} f_{yx}(x,y) = \lim_{(x,y)\to(0,0)} \frac{8x^6}{8x^6} = 1.$$

Therefore, $\lim_{(x,y)\to(0,0)} f_{yx}$ does not exist which gives

$$\lim_{(x,y)\to(0,0)}f_{yx} \neq f_{yx} (0,0).$$

Hence f_{yx} is not continuous.

• We proved $f_{xy}(0,0) = f_{yx}(0,0)$, but condition is not satisfied.