SOUTH EASTERN UNIVERSITY OF SRI LANKA

MTS 00033 MULTIVARIATE CALCULUS

ASSIGNMENT 2

Partial Differentiation

1. Let $f(x, y)=2 x^{2}-x y+2 y^{2}$. Using the definition of partial derivatives, evaluate
(a) $\frac{\partial f}{\partial x}(1,2)$ and
(b) $\frac{\partial f}{\partial y}(1,2)$.
2. Let $f(x, y)=\left\{\begin{array}{ll}\frac{x^{2}-y^{2}}{x^{2}+y^{2}} ; & \text { if }(x, y) \neq(0,0) \\ 0 ; & \text { if }(x, y)=(0,0)\end{array}\right.$.

Compute $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$.
Is f continuous at $(0,0)$.
3. Let $f(x, y)=\left\{\begin{array}{ll}\frac{x^{2} y}{x^{2}+y^{2}} ; & \text { if }(x, y) \neq(0,0) \\ 0 ; & \text { if }(x, y)=(0,0)\end{array}\right.$.

Compute $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.
4. Find $\frac{\partial f}{\partial x}(0,1)$ and $\frac{\partial f}{\partial y}(0,1)$ for

$$
\begin{aligned}
f(x, y)=\sin x+y^{2} \cos x+y^{4} & \tan ^{-1}\left(x\left(y^{2}-1\right)\right) \\
& +\ln \left(2 e^{\sin x}-1\right) \sec x y \tan (y-1) .
\end{aligned}
$$

5. Find the directional derivatives of each of the following functions at the given points:
i. $\quad f(x, y, z)=x^{2} z+y^{3} z^{2}-x y z$ in the direction of $-\underline{i}+3 \underline{k}$.
ii. $\quad f(x, y, z)=\sin y z+\ln x^{2}$ at $(1,1, \pi)$ in the direction $\overline{o f}(i+j-k)$.
6. Let $f(x, y)=x^{3}-3 x y+4 y^{2}$. Find directional derivatives of f at the point $(1,1)$ in the direction of \underline{u}, where \underline{u} makes a constant angle $\frac{\pi}{3}$ with the positive X axis.
7. If $f(x, y)=x^{3}-3 x y+4 y^{2}$, find directional derivatives of f at the point $(1,1,1)$ in the direction of $\underline{u}=\underline{i}+2 \underline{j}-\underline{k}$.
8. Find the directional derivative for the function $f(x, y, z)=x z^{2}-3 x y+2 x y z+5 y-17$ from the point $(2,-6,3)$ towards the origin.
9. Let $f(x, y, z)=x z+e^{y-x^{2}}$.
(a) Find the directional derivative of the function f at the point $(0,0,1)$ in the direction of $(0,1, \sqrt{3})$.
(b) Find the unit vector pointing in the direction along which $f(x, y, z)$ increases most rapidly at the point $(0,0,1)$.
10. Suppose that the pressure P over a surface is given by $P(x, y, z)=5 x^{2}-3 x y+x y z$.
i. Find the rate of pressure changes at $P(3,4,5)$
ii. In which direction does the pressure increases fastest at P.
iii. What is the maximum rate of change of the pressure at P.
11. Find the tangent plane to $f(x, y)=x^{3} y-3 x y^{2}$ at $(2,1)$.
12. Find $\left(x_{0}, y_{0}\right)$ so that the plane tangent to the surface $z=f(x, y)=x^{2}+3 x y-y^{2}$ at $\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right)$ is parallel to the plane $16 x-2 y-2 z=23$.
13. Find an equation of the tangent plane at $(1,3)$ to the graph of $f(x, y)=x y^{2}-x y+$ $3 x^{3} y$.
14. Find an equation of the tangent plane at $(0,3,-1)$ to the surface $f(x, y, z) \equiv z e^{x}+e^{z+1}+$ $x y+y=3$.
15. Let $f(x, y, z)=\sin (3 x+y z)$. Show that $f_{x x y y}=f_{x y y x}$.
16. Show that $u(x, t)=\sin (x+\sin t)$ is a solution to the partial differential equation $u_{t} u_{x x}=$ $u_{x} u_{t x}$.
17. Consider the function $f(x, y)=\left\{\begin{array}{cl}\frac{x^{2} y^{2}}{x^{2}+y^{2}} ; & \text { if }(x, y) \neq(0,0) \\ 0 ; & \text { if } x=0=y\end{array}\right.$. Show that $f_{x y}(0,0)=f_{y x}(0,0)$ however, $f_{x y}$ is not continuous at $(0,0)$.
