MTS 00033 MULTIVARIATE CALCULUS

3 TOTAL DIFFERENTIATION

3.1 Linear Approximation

Since the tangent plane to the surface $z=f(x, y)$ at a point P on the surface is very closed to the surface at least when it is closed to P, we may use the function defining the tangent plane as a linear approximation to f.

Example 3.1 Find the equation of the tangent plane to the surface $z=2 x^{2}+y^{2}$ at the point $P(1,1,3)$. Hence, estimate the values of $f(1.1,0.95)$ and $f(23)$. Compare your estimations with the exact values in each case.

Definition 3.1 The linear approximation $L(x, y)$ to the surface $z=f(x, y)$ at the point $P(a, b)$ whose graph is the tangent plane to the surface at P is given by

$$
L(x, y)=f(a, b)+(x-a) f_{x}(a, b)+(y-b) f_{y}(a, b)
$$

L is called the linearization of f at (a, b) and the approximation $z=f(x, y) \approx L(x, y)$ is called linear approximation (or tangent plane approximation) of f at (a, b).

3.2 Differentiable Functions

Definition 3.2 Let (a, b) and $(a+h, b+k)$ be two nearby points of the domain D of a function $z=f(x, y)$. Then the change Δf of f as the the point (a, b) moves to the point $(a+h, b+k)$ is

$$
\Delta z=\Delta f=f(a+h, b+k)-f(a, b)
$$

The function $z=f(x, y)$ is said to be differentiable at (a, b) if there exist functions $\epsilon_{1}(h, k)$, $E_{2}(h, k)$ such that

$$
\Delta z=f_{x}(a, b) h+f_{y}(a, b) k+\epsilon_{1} h+\epsilon_{2} k,
$$

where $\lim _{(h, k) \rightarrow(0,0)} \epsilon_{1}=0$ and $\lim _{(h, k) \rightarrow(0,0)} \epsilon_{2}=0$.
If the function is differentiable at every point of D, then it is said to be differentiable on D.
Example 3.2 Prove that $f(x, y)=x y$ is differentiable on \mathbb{R}^{2}.
Theorem 3.1 If the function $f(x, y)$ is differentiable at (a, b), then it is continuous and possess first order partial derivatives at (a, b).
The converse is not necessarily true. i.e. if f is continuous at (a, b) and first order partial derivatives exist at (a, b) then, the function f may or may not differentiable there at.

Example 3.3 (Counter Example)
Show that $f(x, y)=\left\{\begin{array}{ll}\frac{x^{3}-y^{3}}{x^{2}+y^{2}} & ;(x, y) \neq 0 \\ 0 & ;(x, y)=0\end{array}\right.$ is continuous and possess first order partial derivatives, but not differentiable at the origin.

Theorem3.2 Sufficient condition for Differentiability

Suppose that $f_{x}(x, y)$ and $f_{y}(x, y)$ exist in an open neighborhood containing (a, b) and one of the partial derivative, say $f_{y}(x, y)$, is continuous at (a, b). Then, f is differentiable at (a, b).

Proof: Since $f_{y}(x, y)$ is continuous at (a, b), there exist an open ball B centered at (a, b) at every point of which f_{y} exists. Take any $(a+h, b+k) \in B$. Then,

$$
f(a+h, b+k)-f(a, b)=\{f(a+h, b+k)-f(a+h, b)\}+\{f(a+h, b)-f(a, b)\} .
$$

Now, consider the function of one variable

$$
\phi(y)=f(a+h, y)
$$

Since f_{y} exists in $B, \phi(y)$ is differentiable in the closed interval $[b, b+k]$ and hence we can apply Lagrange's Mean Value Theorem for $\phi(y)$. Thus, there exists a number θ, such that $0<\theta<1$ and

$$
\phi(b+k)-\phi(b)=k \phi^{\prime}(b+\theta k)=k f_{y}(a+h, b+\theta k) .
$$

Now, if we write

$$
f_{y}(a+h, b+\theta k)-f_{y}(a, b)=\epsilon_{2}(h, k)
$$

Then from the fact that f_{y} is continuous at (a, b), we obtain

$$
\epsilon_{2} \rightarrow 0 \text { as }(h, k) \rightarrow(0,0)
$$

Further, because f_{x} is exists at (a, b) implies

$$
f(a+h, b)-f(a, b)=h f_{x}(a, b)+\epsilon_{1}(h, k)
$$

where $\epsilon_{1} \rightarrow 0$ as $(h, k) \rightarrow(0,0)$.

Combining these two, we get

$$
\begin{aligned}
f(a+h, b+k)-f(a, b) & =k\left\{f_{y}(a, b)+\epsilon_{2}\right\}+h f_{x}(a, b)+\epsilon_{1} \\
& =f_{x}(a, b) h+f_{y}(a, b) k+\epsilon_{1} h+\epsilon_{2} k
\end{aligned}
$$

where $\epsilon_{1}(h, k), \epsilon_{2}(h, k) \rightarrow 0$ as $(h, k) \rightarrow(0,0)$.
Thus, f is differentiable at (a, b).
Example 3.4 Show that $f(x, y)=\left\{\begin{array}{cl}x y\left(\frac{x^{2}-y^{2}}{x^{2}+y^{2}}\right) & ; x^{2}+y^{2} \neq 0 \\ 0 & ; x=0, y=0\end{array}\right.$ is differentiable at the origin.
Remark: The condition of continuity in the above theorem is sufficient but not necessary. That is, if the function is not continuous at a point (a, b), then f may or may not differentiable there at.

Example 3.5 Let

$$
f(x, y)= \begin{cases}x^{2} \sin \left(\frac{1}{x}\right)+y^{2} \sin \left(\frac{1}{y}\right) & ; x y \neq 0 \\ x^{2} \sin \left(\frac{1}{x}\right) & ; x \neq 0, y=0 \\ y^{2} \sin \left(\frac{1}{y}\right) & ; x=0, y \neq 0 \\ 0 & ; x=0, y=0\end{cases}
$$

Show that $f_{x}(0,0), f_{y}(0,0)$ exit, both are discontinuity at the origin, but the function is differentiable.

3.3 The Differentials

Definition 3.3 Let $f\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ be a differentiable function of n variables. The differential (total derivative) $d f$ is defined by

$$
d f=\frac{\partial f}{\partial x_{1}} d x_{1}+\frac{\partial f}{\partial x_{2}} d x_{2}+\cdots+\frac{\partial f}{\partial x_{n}} d x_{n} .
$$

Remark: Consider the function $z=f(x, y)$. The total differential

$$
d z=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y
$$

is an estimate for the actual change (with the difference in the linear (tangent plane) approximation)

$$
\Delta z=f(x+h, y+k)-f(x, y)
$$

in response to (small) changes $d x$ and $d y$ in the input variables.

Example 3.6 Let $f(x, y)=x^{2}+3 x y-y^{2}$. Compare the values of $d z$ and Δz when x changes from 2 to 2.05 and y changes from 3 to 2.96 .

3.4 Total Derivatives of vector functions and Jacobian Matrix: A linear approximation approach

First, we consider a real valued function of single variable. Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ is a differentiable at a point $a \in \mathbb{R}$. Then,

$$
f^{\prime}(a)=\lim _{h \rightarrow 0}\left(\frac{f(a+h)-f(a)}{h}\right)
$$

exists. This says, we can approximate $f(x)$ by

$$
f(a+h) \approx f(a)+f^{\prime}(a) h
$$

when $h \rightarrow 0$. We can write this as

$$
\in(h)=f(a+h)-f(a)-f^{\prime}(a) h
$$

where $\in(h)$ is the error in the approximation and

$$
\lim _{h \rightarrow 0}\left(\frac{\in(h)}{h}\right)=0 .
$$

On the other hand,

$$
\lim _{h \rightarrow 0}\left(\frac{f(a+h)-f(a)-f^{\prime}(a) h}{h}\right)=0 .
$$

Let us now generalize this for a vector valued function of several variables.

Definition $3.4 \quad$ Let $\underline{f}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a map and let \underline{a} be a point in \mathbb{R}^{n}. We say that f is differentiable at \underline{a}, if there is a linear map $\underline{L}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
\underline{f}(\underline{a}+\underline{h}) \approx \underline{f}(\underline{a})+\underline{L}(\underline{h}) .
$$

i.e. .

$$
\lim _{\underline{h} \rightarrow \underline{0}}\left(\frac{f(\underline{f}+\underline{h})-\underline{f}(\underline{a})-\underline{L}(\underline{h})}{\|h\|}\right)=\underline{0} .
$$

In this case, we say that \underline{L} is the total derivative of \underline{f} at the point \underline{a} and we write $D \underline{f}(\underline{a})$ to denote \underline{L}.

Remark: If $m=1$ (single valued functions of several variables), the mapping $D f(\underline{a})$ is given by

$$
D f(\underline{a})\left(h_{1}, h_{2}, \cdots, h_{n}\right)=\frac{\partial f}{\partial x_{1}}(\underline{a}) h_{1}+\frac{\partial f}{\partial x_{2}}(\underline{a}) h_{2}+\cdots+\frac{\partial f}{\partial x_{n}}(\underline{a}) h_{n} .
$$

Example 3.7 Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by $f(x, y)=\left(x+y^{2}, x^{3}+5 y\right)$. Find total derivative of f at $(1,1)$.

Example 3.8 Suppose that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a differentiable function, $f(1,1)=(5,8)$ and the jacobian matrix of f at $(1,1)$ is $\left(\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right)$. Estimate $f(1.1,1.2)$.

Note: This is a good approximation only $h_{1}=0.1, h_{2}=0.2$ can be considered as very small numbers.
Theorem 3.3 Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Write $f=\left(f_{1}, f_{2}, \cdots, f_{m}\right)$, where each $f_{i}=\mathbb{R}^{n} \rightarrow \mathbb{R}$. If for all i and $j, \frac{\partial f_{i}}{\partial x_{j}}$ is defined and continuous lose to \underline{a}. Then, the function f is differentiable at \underline{a}, and the matrix for $D f(\underline{a})$ is given by

$$
\left(\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{2}}{\partial x_{n}} \\
\vdots & \vdots & \cdots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \frac{\partial f_{m}}{\partial x_{2}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right)_{m \times n}
$$

This matrix is called the total derivative matrix or Jacobian matrix of f at \underline{a}.
Example 3.9 Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ defines the transformation from cylindrical polar coordinates to rectangular caartesian coordinates, Find $D f\left(5, \frac{\pi}{3}, 0\right)$.

3.5 Differentials of Higher order

Let $z=z(x, y)$ and it is differentiable at a point (x, y). Then, we have

$$
d z=\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y
$$

If we treat $d x, d y$ as constant and $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$ as a function of x and y, then $d z$ itself a function of x and y and it self-differentiable. Therefore, the second order differential

$$
\begin{align*}
d^{2} z & =d(d z) \\
& =d\left[\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y\right] \\
& =d\left[\frac{\partial z}{\partial x}\right] d x+d\left[\frac{\partial z}{\partial y}\right] d y \tag{1}
\end{align*}
$$

Define the operator $d \equiv \frac{\partial}{\partial x} d x+\frac{\partial}{\partial y} d y$. Then,

$$
\begin{align*}
d\left(\frac{\partial z}{\partial x}\right) & =\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right) d x+\frac{\partial z}{\partial y}\left(\frac{\partial z}{\partial x}\right) d y \\
& =\frac{\partial^{2} z}{\partial x^{2}} d x+\frac{\partial^{2} z}{\partial y \partial x} d y \tag{2}
\end{align*}
$$

and

$$
\begin{align*}
d\left(\frac{\partial z}{\partial y}\right) & =\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right) d x+\frac{\partial z}{\partial y}\left(\frac{\partial z}{\partial y}\right) d y \\
& =\frac{\partial^{2} z}{\partial x \partial y} d x+\frac{\partial^{2} z}{\partial y^{2}} d y \tag{3}
\end{align*}
$$

Since $\frac{\partial z}{\partial x} \& \frac{\partial z}{\partial y}$ are differentiable, we have

$$
\begin{equation*}
\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial^{2} z}{\partial y \partial x} \ldots \tag{4}
\end{equation*}
$$

By (1), (2), (3) \& (4) we get

$$
\begin{aligned}
d^{2} z & =\left[\frac{\partial^{2} z}{\partial x^{2}} d x+\frac{\partial^{2} z}{\partial y \partial x} d y\right] d x+\left[\frac{\partial^{2} z}{\partial x \partial y} d x+\frac{\partial^{2} z}{\partial y^{2}} d y\right] d y \\
& =\frac{\partial^{2} z}{\partial x^{2}} d x^{2}+2 \frac{\partial^{2} z}{\partial x \partial y} d x d y+\frac{\partial^{2} z}{\partial y^{2}} d y^{2} \\
& =\left[\frac{\partial}{\partial x} d x+\frac{\partial}{\partial y} d y\right]^{2} z .
\end{aligned}
$$

By the principle of Mathematical induction, we can prove, in general

$$
d^{n} z=\left[\frac{\partial}{\partial x} d x+\frac{\partial}{\partial y} d y\right]^{n} z
$$

Remark:

If $d x$ and $d y$ are can't be treated as constant, then

$$
\begin{aligned}
d^{2} z & =d(d z) \\
& =d\left(\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y\right) \\
& =d\left(\frac{\partial z}{\partial x}\right) d x+\frac{\partial z}{\partial x} d^{2} x+d\left(\frac{\partial z}{\partial y}\right) d y+\frac{\partial z}{\partial y} d^{2} y \\
& =\left[\frac{\partial}{\partial x} d x+\frac{\partial}{\partial y} d y\right]^{2} z+\frac{\partial z}{\partial x} d^{2} x+\frac{\partial z}{\partial y} d^{2} y
\end{aligned}
$$

Higher order derivatives can be found in a similar manner and no simple general formula can be given to $d^{n} z$.

3.6 Derivatives of Composition Functions - Chain Rules

Theorem 3.4 Chain Rule 1

Suppose that $z=f(x, y)$ is differentiable function of the variables x and y, where $x=g(t), y=$ $h(t)$ are both differentiable functions of the variables t, then z is differentiable function of t and

$$
\frac{d z}{d t}=\frac{\partial z}{\partial x} \frac{d x}{d t}+\frac{\partial z}{\partial y} \frac{d y}{d t}
$$

Example 3.10 Let $z=x^{2} y+3 x y^{4}$, where $x=\sin 2 t, y=\cos t$. Find $\frac{d z}{d t}$.

Theorem 3.5 Chain Rule II

Suppose that $z=f(x, y)$ is differentiable function of the variables x and y, where $x=g(u, v)$, $y=h(u, v)$ are both differentiable functions of the variables u, v, then z is differentiable function of u, v and

$$
\begin{aligned}
& \frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u} \\
& \frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v}
\end{aligned}
$$

Example 3.11 If f is a differentiable function and $z=f\left(x^{2} y\right)$, show that $x \frac{\partial z}{\partial x}=2 y \frac{\partial z}{\partial y}$.
Example 3.12 Let $F(x, y)$ be a homogeneous function of degree n. prove that

$$
x \frac{\partial F}{\partial x}+y \frac{\partial F}{\partial y}=n F .
$$

Hence show that for $F(x, y)=x^{4} y^{2} \sin ^{-1}\left(\frac{y}{x}\right)$,

$$
x \frac{\partial F}{\partial x}+y \frac{\partial F}{\partial y}=6 F
$$

3.7 Differentiation of Implicit Functions

Consider the function $f(x, y)=0$, where $y=y(x)$. Differentiating with respect to x, we get

$$
\frac{\partial f}{\partial x} \cdot \frac{d x}{d x}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d x}=0
$$

This gives,

$$
\frac{d y}{d x}=-\frac{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}=-\frac{f_{x}}{f_{y}}
$$

Example 3.13 If $x^{3}+y^{3}=6 x y$, find $\frac{d y}{d x}$.

Now, let $f(x, y, z)=0$, where $z=z(x, y)$. Then, differentiating with respect to x, we get

$$
\frac{\partial f}{\partial x} \cdot \frac{d x}{d x}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d x}+\frac{\partial f}{\partial z} \cdot \frac{\partial z}{\partial x}=0 .
$$

However, we know that $\frac{d x}{d x}=1$ and $\frac{d y}{d x}=0$. Thus,

$$
\frac{\partial z}{\partial x}=--\frac{f_{x}}{f_{z}}
$$

Similarly, we may obtain

$$
\frac{\partial z}{\partial y}=--\frac{f_{y}}{f_{z}}
$$

3.8 Taylor's Theorem for Function of Two Variables

Theorem 3.6 Let (a, b) and its neighboring point $(a+h, b+k)$ be in the domain D of a function $f(x, y)$ which possess continuous partial derivatives of order n in D. Then, there is a number θ such that

$$
\begin{gathered}
f(a+h, b+k)=f(a, b)+\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right) f(a, b)+\frac{1}{2!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{2} f(a, b)+\cdots \\
\cdots+\frac{1}{(n-1)!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{n-1} f(a, b)+R_{n}
\end{gathered}
$$

where R_{n} is the remainder after n terms.
Cauchy's form for remainder is

$$
R_{n}=\frac{1}{n!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{n} f(a+\theta h, b+\theta k), \quad 0<\theta<1 .
$$

Proof: Let $x=a+t h, y=b+t k$, where $0 \leq t \leq 1$. Then,

$$
f(x, y)=f(a+t h, b+t k)=\phi(t)
$$

where $\phi(t)$ is a function of single variable.

Since partial derivatives of $f(x, y)$ are continuous up to order $n, \phi(t), \phi^{\prime}(t), \cdots, \phi^{n}(t)$ are continuous on $[0,1]$. Now,

$$
\begin{aligned}
\phi^{\prime}(t) & =\frac{d \phi}{d t}=\frac{d f}{d t}=\frac{\partial f}{\partial x} \cdot \frac{d x}{d t}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d t} \\
& =h \frac{\partial f}{\partial x}+k \frac{\partial f}{\partial y} \\
& =\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right) f .
\end{aligned}
$$

We may take the differential operator

$$
\frac{d}{d t} \equiv h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y} .
$$

Hence

$$
\begin{aligned}
\phi^{\prime \prime}(t) & =\frac{d^{2} \phi}{d t^{2}}=\frac{d}{d t}\left(\frac{d f}{d t}\right) \\
& =\left(h \frac{\partial f}{\partial x}+k \frac{\partial f}{\partial y}\right)\left(h \frac{\partial f}{\partial x}+k \frac{\partial f}{\partial y}\right) f \\
& =\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{2} f
\end{aligned}
$$

Continuing in this way, we get

$$
\phi^{(n)}(t)=\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{n} f(a+t h, b+t k) \quad-----(*) .
$$

H.W. Prove this by the Principle of Mathematical Induction.

The Maclaurin series for single variable is

$$
\phi(t)=\phi(0)+t \phi^{\prime}(0)+\frac{t^{2}}{2!} \phi^{\prime \prime}(0)+\cdots+\frac{t^{n-1}}{(n-1)!} \phi^{(n-1)}(0)+\frac{t^{n}}{n!} \phi^{(n)}(\theta t)
$$

where $0<\theta<1$.
Putting $t=1$ with (*), we get

$$
\begin{aligned}
\phi(1)= & f(a+h, b+k) \\
=f(a, b)+\left(h \frac{\partial}{\partial x}+\right. & \left.k \frac{\partial}{\partial y}\right) f(a, b)+\frac{1}{2!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{2} f(a, b)+\cdots \\
& \cdots+\frac{1}{(n-1)!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{n-1} f(a, b)+R_{n},
\end{aligned}
$$

where

$$
R_{n}=\frac{1}{n!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{n} f(a+\theta h, b+\theta k), \quad 0<\theta<1 .
$$

Remark: Putting $a+h=x, b+k=y$ or $h=x-a, k=y-b$, we get

$$
\begin{aligned}
f(x, y)=f(a, b) & +\left[(x-a) \frac{\partial}{\partial x}+(y-b) \frac{\partial}{\partial y}\right] f(a, b) \\
& +\frac{1}{2!}\left[(x-a) \frac{\partial}{\partial x}+(y-b) \frac{\partial}{\partial y}\right]^{2} f(a, b)+\cdots \\
& +\frac{1}{(n-1)!}\left[(x-a) \frac{\partial}{\partial x}+(y-b) \frac{\partial}{\partial y}\right]^{n-1} f(a, b)+R_{n}
\end{aligned}
$$

where

$$
R_{n}=\frac{1}{n!}\left[(x-a) \frac{\partial}{\partial x}+(y-b) \frac{\partial}{\partial y}\right]^{n} f(a+(x-a) \theta, b+(y-b) \theta), \quad 0<\theta<1 .
$$

Example 3.14 Expand $x^{2} y+3 y-2$ in powers of $(x-1)$ and $(y+2)$.

