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MTS 00033 MULTIVARIATE CALCULUS 

 

3 TOTAL DIFFERENTIATION 

 

3.1 Linear Approximation 

Since the tangent plane to the surface  𝑧 = 𝑓(𝑥, 𝑦)  at a point  𝑃  on the surface is very closed to the 

surface at least when it is closed to  𝑃, we may use the function defining the tangent plane as a linear 

approximation to  𝑓. 

 

Example 3.1 Find the equation of the tangent plane to the surface  𝑧 = 2𝑥2 + 𝑦2  at the point  

𝑃(1, 1, 3). Hence, estimate the values of  𝑓(1.1, 0.95)  and  𝑓(23). Compare your estimations with the 

exact values in each case. 

 

Definition 3.1 The linear approximation  𝐿(𝑥, 𝑦)  to the surface  𝑧 = 𝑓(𝑥, 𝑦)  at the point  𝑃(𝑎, 𝑏) 

whose graph is the tangent plane to the surface at  P  is given by 

𝐿(𝑥, 𝑦) = 𝑓(𝑎, 𝑏) + (𝑥 − 𝑎)𝑓𝑥(𝑎, 𝑏) + (𝑦 − 𝑏)𝑓𝑦(𝑎, 𝑏). 

𝐿  is called the linearization of  f  at  (𝑎, 𝑏)  and the approximation  𝑧 = 𝑓(𝑥, 𝑦) ≈ 𝐿(𝑥, 𝑦)  is called 

linear approximation (or tangent plane approximation) of  𝑓  at  (𝑎, 𝑏). 

 

3.2 Differentiable Functions 
 

Definition 3.2 Let (𝑎, 𝑏) and (𝑎 + ℎ , 𝑏 +  𝑘)  be two nearby points of the domain  𝐷 of a function  

𝑧 = 𝑓(𝑥, 𝑦) . Then the change ∆𝑓  of  𝑓 as the the point (𝑎, 𝑏)  moves to the point (𝑎 + ℎ , 𝑏 +  𝑘)  is  

    ∆𝑧 = ∆𝑓 = 𝑓(𝑎 + ℎ , 𝑏 + 𝑘) − 𝑓(𝑎, 𝑏).   
 

The function 𝑧 = 𝑓(𝑥, 𝑦) is said to be differentiable at (𝑎, 𝑏)  if  there exist functions   ∈1 (ℎ, 𝑘), 

∈2 (ℎ, 𝑘) such that 

∆𝑧 = 𝑓𝑥(𝑎, 𝑏)ℎ + 𝑓𝑦(𝑎, 𝑏)  𝑘 + ∈1 ℎ +∈2 𝑘, 

where   lim
(ℎ,𝑘)→(0,0)

 ∈1 = 0     and     lim
(ℎ,𝑘)→(0,0)

 ∈2 = 0. 

 

If the function is differentiable at every point  of  𝐷, then it is said to be differentiable on  𝐷. 

 

Example 3.2 Prove that  𝑓(𝑥, 𝑦) = 𝑥𝑦  is differentiable on ℝ2. 

 

Theorem 3.1 If the function 𝑓(𝑥, 𝑦) is differentiable at  (𝑎, 𝑏), then it is continuous and possess first 

order partial derivatives at  (𝑎, 𝑏).  

The converse is not necessarily true. i.e. if  𝑓 is continuous at  (𝑎, 𝑏) and first order partial derivatives 

exist at  (𝑎, 𝑏) then, the function 𝑓 may or may not differentiable there at.  

 

Example 3.3 (Counter Example) 
 

Show that 𝑓(𝑥, 𝑦 ) =  {
𝑥3− 𝑦3

𝑥2+ 𝑦2
                 ; (𝑥, 𝑦)   ≠ 0

 0                          ; (𝑥, 𝑦) = 0
  is continuous and possess first order partial 

derivatives, but not differentiable at the origin. 
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Theorem3.2  Sufficient condition for Differentiability 

Suppose that  𝑓𝑥(𝑥, 𝑦) and  𝑓𝑦(𝑥, 𝑦)  exist in an open neighborhood containing  (𝑎, 𝑏)  and one of the 

partial derivative, say 𝑓𝑦(𝑥, 𝑦), is continuous at  (𝑎, 𝑏). Then,  𝑓  is differentiable at  (𝑎, 𝑏). 

 

Proof: Since  𝑓𝑦(𝑥, 𝑦) is continuous at  (𝑎, 𝑏), there exist an open ball  𝐵  centered at  (𝑎, 𝑏)  at 

every point of which  𝑓𝑦  exists. Take any  (𝑎 + ℎ, 𝑏 + 𝑘) ∈ 𝐵. Then, 

𝑓(𝑎 + ℎ, 𝑏 + 𝑘) − 𝑓(𝑎, 𝑏) = {𝑓(𝑎 + ℎ, 𝑏 + 𝑘) − 𝑓(𝑎 + ℎ, 𝑏)} + {𝑓(𝑎 + ℎ, 𝑏) − 𝑓(𝑎, 𝑏)}. 

 

Now, consider the function of one variable   

𝜙(𝑦) = 𝑓(𝑎 + ℎ, 𝑦). 

Since 𝑓𝑦  exists in  𝐵, 𝜙(𝑦)  is differentiable in the closed interval  [𝑏, 𝑏 + 𝑘] and hence we can apply 

Lagrange’s Mean Value Theorem for 𝜙(𝑦). Thus, there exists a number  𝜃, such that  0 < 𝜃 < 1  and 

𝜙(𝑏 + 𝑘) − 𝜙(𝑏) = 𝑘 𝜙′(𝑏 + 𝜃𝑘) = 𝑘𝑓𝑦(𝑎 + ℎ, 𝑏 + 𝜃𝑘). 

 

Now, if we write 

𝑓𝑦(𝑎 + ℎ, 𝑏 + 𝜃𝑘) − 𝑓𝑦(𝑎, 𝑏) =∈2 (ℎ, 𝑘), 

Then from the fact that  𝑓𝑦  is continuous at  (𝑎, 𝑏), we obtain 

∈2→ 0  as  (ℎ, 𝑘) → (0,0). 

Further, because  𝑓𝑥  is exists at  (𝑎, 𝑏)  implies 

𝑓(𝑎 + ℎ, 𝑏) − 𝑓(𝑎, 𝑏) = ℎ 𝑓𝑥(𝑎, 𝑏) +∈1 (ℎ, 𝑘) 

where  ∈1→ 0  as  (ℎ, 𝑘) → (0,0). 

 

Combining these two, we get 

𝑓(𝑎 + ℎ, 𝑏 + 𝑘) − 𝑓(𝑎, 𝑏) = 𝑘{𝑓𝑦(𝑎, 𝑏) +∈2} + ℎ 𝑓𝑥(𝑎, 𝑏) +∈1 

= 𝑓𝑥(𝑎, 𝑏)ℎ + 𝑓𝑦(𝑎, 𝑏)  𝑘 + ∈1 ℎ +∈2 𝑘, 

where  ∈1 (ℎ, 𝑘), ∈2 (ℎ, 𝑘) → 0  as  (ℎ, 𝑘) → (0,0). 

Thus,  𝑓  is differentiable at  (𝑎, 𝑏). 

 

Example 3.4 Show that  𝑓(𝑥, 𝑦) =  {
𝑥𝑦 (

𝑥2− 𝑦2

𝑥2+ 𝑦2
)   ;  𝑥2 + 𝑦2  ≠ 0 

0                      ;  𝑥 = 0,   𝑦 = 0
  is differentiable at the origin. 

 

Remark: The condition of continuity in the above theorem is sufficient but not necessary. That is, if 

the function is not continuous at a point  (𝑎, 𝑏), then 𝑓  may or may not differentiable there at.  

 

Example 3.5 Let 

𝑓(𝑥, 𝑦) =  

{
 
 
 

 
 
 𝑥2 sin (

1

𝑥
) + 𝑦2 sin (

1

𝑦
)        ;       𝑥𝑦 ≠ 0

𝑥2 sin (
1

𝑥
)                           ; 𝑥 ≠ 0,   𝑦 = 0

𝑦2 sin ( 
1

𝑦
 )                       ; 𝑥 = 0,   𝑦 ≠ 0

0                                          ; 𝑥 = 0,   𝑦 = 0

 

Show that  𝑓𝑥(0,0), 𝑓𝑦(0,0) exit, both are discontinuity at the origin, but the function is differentiable. 
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3.3 The Differentials 
 

Definition 3.3  Let  𝑓(𝑥1, 𝑥2, ⋯ , 𝑥𝑛)  be a differentiable function of  𝑛  variables. The 

differential  (total derivative)  𝑑𝑓  is defined by 

𝑑𝑓 =
𝜕𝑓

𝜕𝑥1
𝑑𝑥1 +

𝜕𝑓

𝜕𝑥2
𝑑𝑥2 +⋯+

𝜕𝑓

𝜕𝑥𝑛
𝑑𝑥𝑛. 

 

Remark: Consider the function  𝑧 = 𝑓(𝑥, 𝑦). The total differential  

𝑑𝑧 =
𝜕𝑓

𝜕𝑥
𝑑𝑥 +

𝜕𝑓

𝜕𝑦
𝑑𝑦 

 is an estimate for the actual change (with the difference in the linear (tangent plane) approximation) 

∆𝑧 = 𝑓(𝑥 + ℎ, 𝑦 + 𝑘) − 𝑓(𝑥, 𝑦) 

 in response to (small) changes  𝑑𝑥  and  𝑑𝑦  in the input variables.  

 

Example 3.6 Let  𝑓(𝑥, 𝑦) = 𝑥2 + 3𝑥𝑦 − 𝑦2. Compare the values of  𝑑𝑧  and  ∆𝑧  when  x  changes 

from 2 to 2.05 and  y  changes from 3 to 2.96. 

 

 

3.4 Total Derivatives of vector functions and Jacobian Matrix: A linear approximation 

approach 

  

First, we consider a real valued function of single variable. Assume that  𝑓:ℝ ⟶ ℝ  is a differentiable 

at a point  𝑎 ∈ ℝ. Then, 

𝑓′(𝑎) = lim
ℎ→0

(
𝑓(𝑎 + ℎ) − 𝑓(𝑎)

ℎ
) 

exists. This says, we can approximate  𝑓(𝑥)  by 

𝑓(𝑎 + ℎ) ≈ 𝑓(𝑎) + 𝑓′(𝑎) ℎ 

when  ℎ → 0. We can write this as 

∈ (ℎ) = 𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝑓′(𝑎) ℎ, 

where  ∈ (ℎ)  is the error in the approximation and 

lim
ℎ→0

(
∈ (ℎ)

ℎ
) = 0. 

On the other hand, 

lim
ℎ→0

(
𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝑓′(𝑎) ℎ

ℎ
) = 0. 

 

Let us now generalize this for a vector valued function of several variables. 

 

Definition 3.4  Let  𝑓:ℝ𝑛 → ℝ𝑚  be a map and let  𝑎  be a point in  ℝ𝑛. We say that  𝑓  is 

differentiable at  𝑎, if there is a linear map  𝐿:ℝ𝑛 → ℝ𝑚  such that  

𝑓(𝑎 + ℎ) ≈ 𝑓(𝑎) + 𝐿(ℎ). 

i.e. . 

lim
ℎ→0

(
𝑓(𝑎 + ℎ) − 𝑓(𝑎) − 𝐿(ℎ)

‖ℎ‖
) = 0. 
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In this case, we say that 𝐿 is the total derivative of 𝑓 at the point  𝑎  and we write  𝐷𝑓(𝑎) to denote  𝐿. 

 

Remark: If  𝑚 = 1 (single valued functions of several variables), the mapping 𝐷𝑓(𝑎)  is given by 

𝐷𝑓(𝑎)(ℎ1, ℎ2, ⋯ , ℎ𝑛) =
𝜕𝑓

𝜕𝑥1
(𝑎)ℎ1 +

𝜕𝑓

𝜕𝑥2
(𝑎)ℎ2 +⋯+

𝜕𝑓

𝜕𝑥𝑛
(𝑎)ℎ𝑛. 

 

Example 3.7 Consider the function  𝑓:ℝ2 → ℝ2 given by  𝑓(𝑥, 𝑦) = (𝑥 + 𝑦2, 𝑥3 + 5𝑦). Find total 

derivative of  𝑓  at  (1,1). 

 

Example 3.8 Suppose that  𝑓:ℝ2 → ℝ  is a differentiable function, 𝑓(1,1) = (5,8) and the jacobian 

matrix of  𝑓 at  (1, 1)  is  (
1 1
2 3

). Estimate  𝑓(1.1, 1.2). 

 

Note: This is a good approximation only ℎ1=0.1, ℎ2 = 0.2  can be considered as very small numbers. 

 

Theorem 3.3 Suppose that  𝑓:ℝ𝑛 → ℝ𝑚. Write  𝑓 = (𝑓1, 𝑓2, ⋯ , 𝑓𝑚), where each  𝑓𝑖 = ℝ𝑛 → ℝ. If 

for all  𝑖  and  𝑗,  
𝜕𝑓𝑖

𝜕𝑥𝑗
  is defined and continuous lose to  𝑎. Then, the function  𝑓  is differentiable at  𝑎, 

and the matrix for  𝐷𝑓(𝑎)  is given by 

(

 
 
 
 
 

𝜕𝑓
1

𝜕𝑥1

𝜕𝑓
1

𝜕𝑥2
𝜕𝑓

2

𝜕𝑥1

𝜕𝑓
2

𝜕𝑥2

⋯
𝜕𝑓

1

𝜕𝑥𝑛

⋯
𝜕𝑓

2

𝜕𝑥𝑛
⋮ ⋮

𝜕𝑓
𝑚

𝜕𝑥1

𝜕𝑓
𝑚

𝜕𝑥2

⋯ ⋮

⋯
𝜕𝑓

𝑚

𝜕𝑥𝑛)

 
 
 
 
 

𝑚×𝑛

. 

This matrix is called the total derivative matrix or Jacobian matrix of  𝑓  at  𝑎. 

 

Example 3.9 Let  𝑓:ℝ3 → ℝ3  defines the transformation from cylindrical polar coordinates to 

rectangular caartesian coordinates, Find 𝐷𝑓 (5,
𝜋

3
, 0). 

 

3.5 Differentials of Higher order 

Let 𝑧 =  𝑧(𝑥, 𝑦) and it is differentiable at a point  (𝑥, 𝑦). Then, we have 

𝑑𝑧 =  
𝜕𝑧

𝜕𝑥
 𝑑𝑥 + 

𝜕𝑧

𝜕𝑦
 𝑑𝑦 

If we treat 𝑑𝑥, 𝑑𝑦 as constant and 
𝜕𝑧

𝜕𝑥
 ,
𝜕𝑧

𝜕𝑦
 as a function of 𝑥 and 𝑦, then 𝑑𝑧 itself a function of 𝑥 and 𝑦 

and it self-differentiable. Therefore, the second order differential 

𝑑2𝑧 = 𝑑(𝑑𝑧) 

= 𝑑 [
𝜕𝑧

𝜕𝑥
 𝑑𝑥 + 

𝜕𝑧

𝜕𝑦
 𝑑𝑦] 

= 𝑑 [
𝜕𝑧

𝜕𝑥
]  𝑑𝑥 + 𝑑 [ 

𝜕𝑧

𝜕𝑦
]  𝑑𝑦         …… . . (1) 

Define the operator 𝑑 ≡
𝜕

𝜕𝑥
 𝑑𝑥 + 

𝜕

𝜕𝑦
 𝑑𝑦. Then,  
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𝑑 (
𝜕𝑧

𝜕𝑥
) =  

𝜕

𝜕𝑥
(
𝜕𝑧

𝜕𝑥
)  𝑑𝑥 +

𝜕𝑧

𝜕𝑦
 (
𝜕𝑧

𝜕𝑥
)  𝑑𝑦 

= 
𝜕2𝑧

𝜕 𝑥2
 𝑑𝑥 + 

𝜕2𝑧

𝜕𝑦 𝜕𝑥
 𝑑𝑦        …… . . (2)   

and 

𝑑 (
𝜕𝑧

𝜕𝑦
) =  

𝜕

𝜕𝑥
(
𝜕𝑧

𝜕𝑦
)  𝑑𝑥 +

𝜕𝑧

𝜕𝑦
 (
𝜕𝑧

𝜕𝑦
)  𝑑𝑦 

= 
𝜕2𝑧

𝜕𝑥 𝜕𝑦 
 𝑑𝑥 + 

𝜕2𝑧

𝜕𝑦2
 𝑑𝑦           …… . . (3)   

Since  
𝜕𝑧

𝜕𝑥
  & 

𝜕𝑧

𝜕𝑦
 are differentiable, we have   

𝜕2𝑧

𝜕𝑥 𝜕𝑦 
=  

𝜕2𝑧

𝜕𝑦 𝜕𝑥 
………… . (4) 

By (1), (2), (3) & (4) we get 

𝑑2𝑧 = [
𝜕2𝑧

𝜕 𝑥2
 𝑑𝑥 + 

𝜕2𝑧

𝜕𝑦 𝜕𝑥
 𝑑𝑦 ]  𝑑𝑥 + [

𝜕2𝑧

𝜕𝑥 𝜕𝑦 
 𝑑𝑥 + 

𝜕2𝑧

𝜕𝑦2
 𝑑𝑦 ] 𝑑𝑦 

= 
𝜕2𝑧

𝜕 𝑥2
 𝑑𝑥2 + 2

𝜕2𝑧

𝜕𝑥 𝜕𝑦 
 𝑑𝑥 𝑑𝑦 +

𝜕2𝑧

𝜕𝑦2
 𝑑𝑦2 

= [ 
𝜕

𝜕𝑥
 𝑑𝑥 + 

𝜕

𝜕𝑦
 𝑑𝑦]

2

𝑧. 

By the principle of Mathematical induction, we can prove, in general 

𝑑𝑛𝑧 =  [ 
𝜕

𝜕𝑥
 𝑑𝑥 + 

𝜕

𝜕𝑦
 𝑑𝑦]

𝑛

𝑧. 

Remark: 

If  𝑑𝑥  and  𝑑𝑦  are can’t be treated as constant, then 

𝑑2𝑧 = 𝑑(𝑑𝑧) 

= 𝑑 (
𝜕𝑧

𝜕𝑥
 𝑑𝑥 + 

𝜕𝑧

𝜕𝑦
 𝑑𝑦) 

=  𝑑 (
𝜕𝑧

𝜕𝑥
) 𝑑𝑥 + 

𝜕𝑧

𝜕𝑥
 𝑑2𝑥 + 𝑑 (

𝜕𝑧

𝜕𝑦
)  𝑑𝑦 + 

𝜕𝑧

𝜕𝑦
 𝑑2𝑦 

= [ 
𝜕

𝜕𝑥
 𝑑𝑥 + 

𝜕

𝜕𝑦
 𝑑𝑦]

2

𝑧 + 
𝜕𝑧

𝜕𝑥
 𝑑2𝑥 + 

𝜕𝑧

𝜕𝑦
 𝑑2𝑦 

 

Higher order derivatives can be found in a similar manner and no simple general formula can be 

given to 𝑑𝑛𝑧. 

 

 

3.6 Derivatives of Composition Functions – Chain Rules 
 

Theorem 3.4 Chain Rule 1 

Suppose that  𝑧 =  𝑓(𝑥, 𝑦) is differentiable function of the variables 𝑥  and  𝑦, where  𝑥 = 𝑔(𝑡), 𝑦 =

ℎ(𝑡) are both differentiable functions of the variables 𝑡, then   𝑧  is differentiable function of  𝑡  and 

𝑑𝑧

𝑑𝑡
=
𝜕𝑧

𝜕𝑥
 
𝑑𝑥

𝑑𝑡
+ 
𝜕𝑧

𝜕𝑦
 
𝑑𝑦

𝑑𝑡
. 

Example 3.10 Let  𝑧 = 𝑥2𝑦 + 3𝑥𝑦4, where  𝑥 = sin 2𝑡 , 𝑦 = cos 𝑡. Find  
𝑑𝑧

𝑑𝑡
. 



M.A.A.M. Faham Chapter 3: Total Differentiation Page 6 
FAS / SEUSL 2019/2020 
 

Theorem 3.5 Chain Rule II 

Suppose that  𝑧 =  𝑓(𝑥, 𝑦) is differentiable function of the variables 𝑥  and  𝑦, where  𝑥 = 𝑔(𝑢, 𝑣),

𝑦 = ℎ(𝑢, 𝑣) are both differentiable functions of the variables u, v, then   𝑧  is differentiable function 

of  𝑢, 𝑣  and 

𝜕𝑧

𝜕𝑢
=  
𝜕𝑧

𝜕𝑥
 .
𝜕𝑥

𝜕𝑢
+ 
𝜕𝑧

𝜕𝑦
 .
𝜕𝑦

𝜕𝑢
, 

𝜕𝑧

𝜕𝑣
=  
𝜕𝑧

𝜕𝑥
 .
𝜕𝑥

𝜕𝑣
+ 
𝜕𝑧

𝜕𝑦
 .
𝜕𝑦

𝜕𝑣
 . 

 

Example 3.11 If  𝑓 is a differentiable function and  𝑧 =  𝑓(𝑥2𝑦), show that  𝑥
𝜕𝑧

𝜕𝑥
=  2𝑦 

𝜕𝑧

𝜕𝑦
. 

 

Example 3.12 Let  𝐹(𝑥, 𝑦)  be a homogeneous function of degree  𝑛. prove that   

𝑥 
𝜕𝐹

𝜕𝑥
+ 𝑦

𝜕𝐹

𝜕𝑦
= 𝑛𝐹. 

Hence show that for  𝐹(𝑥, 𝑦) =  𝑥4𝑦2  sin−1 (
𝑦

𝑥
),   

𝑥 
𝜕𝐹

𝜕𝑥
+ 𝑦

𝜕𝐹

𝜕𝑦
= 6𝐹. 

 

3.7 Differentiation of Implicit Functions 
 

Consider the function  𝑓(𝑥, 𝑦) = 0,  where  𝑦 = 𝑦(𝑥). Differentiating with respect to  𝑥, we get 

 
𝜕𝑓

𝜕𝑥
 .
𝑑𝑥

𝑑𝑥
+ 
𝜕𝑓

𝜕𝑦
 .
𝑑𝑦

𝑑𝑥
= 0. 

This gives, 

𝑑𝑦

𝑑𝑥
= −

𝜕𝑓
𝜕𝑥
𝜕𝑓
𝜕𝑦

= −
𝑓𝑥
𝑓𝑦
. 

Example 3.13 If  𝑥3 + 𝑦3 = 6𝑥𝑦,  find  
𝑑𝑦

𝑑𝑥
. 

 

Now, let  𝑓(𝑥, 𝑦, 𝑧) = 0, where  𝑧 = 𝑧(𝑥, 𝑦). Then, differentiating with respect to  𝑥, we get 

𝜕𝑓

𝜕𝑥
 .
𝑑𝑥

𝑑𝑥
+ 
𝜕𝑓

𝜕𝑦
 .
𝑑𝑦

𝑑𝑥
+
𝜕𝑓

𝜕𝑧
 .
𝜕𝑧

𝜕𝑥
= 0. 

However, we know that  
𝑑𝑥

𝑑𝑥
= 1  and  

𝑑𝑦

𝑑𝑥
= 0. Thus, 

𝜕𝑧

𝜕𝑥
= − −

𝑓𝑥
𝑓𝑧
. 

Similarly, we may obtain 

𝜕𝑧

𝜕𝑦
= − −

𝑓𝑦

𝑓𝑧
 

 

 

3.8 Taylor’s Theorem for Function of Two Variables 
 

Theorem 3.6 Let  (𝑎, 𝑏) and its neighboring point  (𝑎 + ℎ, 𝑏 + 𝑘)  be in the domain  𝐷 of a function  

𝑓(𝑥, 𝑦)  which possess continuous partial derivatives of order  𝑛  in 𝐷. Then, there is a number  𝜃  such 

that 
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𝑓(𝑎 + ℎ, 𝑏 + 𝑘) = 𝑓(𝑎, 𝑏) + (ℎ
𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
)𝑓(𝑎, 𝑏) +

1

2!
(ℎ

𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
)
2

𝑓(𝑎, 𝑏) +⋯ 

                                                 ⋯+
1

(𝑛 − 1)!
(ℎ

𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
)
𝑛−1

𝑓(𝑎, 𝑏) + 𝑅𝑛, 

where  𝑅𝑛  is the remainder after  n  terms. 

 

Cauchy’s form for remainder is 

𝑅𝑛 =
1

𝑛!
(ℎ

𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
)
𝑛

𝑓(𝑎 + 𝜃ℎ, 𝑏 + 𝜃𝑘), 0 < 𝜃 < 1. 

 

Proof: Let  𝑥 = 𝑎 + 𝑡ℎ, 𝑦 = 𝑏 + 𝑡𝑘,  where  0 ≤ 𝑡 ≤ 1. Then, 

𝑓(𝑥, 𝑦) = 𝑓(𝑎 + 𝑡ℎ, 𝑏 + 𝑡𝑘) = 𝜙(𝑡), 

where 𝜙(𝑡)  is a function of single variable. 

  

Since partial derivatives of  𝑓(𝑥, 𝑦)  are continuous up to order  𝑛, 𝜙(𝑡), 𝜙′(𝑡),⋯ , 𝜙𝑛(𝑡) are 

continuous on  [0, 1]. Now, 

𝜙′(𝑡) =
𝑑𝜙

𝑑𝑡
=
𝑑𝑓

𝑑𝑡
=
𝜕𝑓

𝜕𝑥
 .
𝑑𝑥

𝑑𝑡
+ 
𝜕𝑓

𝜕𝑦
 .
𝑑𝑦

𝑑𝑡
 

= ℎ
𝜕𝑓

𝜕𝑥
+ 𝑘

𝜕𝑓

𝜕𝑦
 

= (ℎ
𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
)𝑓. 

We may take the differential operator 

𝑑

𝑑𝑡
≡ ℎ

𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
. 

Hence 

𝜙′′(𝑡) =
𝑑2𝜙

𝑑𝑡2
=
𝑑

𝑑𝑡
(
𝑑𝑓

𝑑𝑡
) 

= (ℎ
𝜕𝑓

𝜕𝑥
+ 𝑘

𝜕𝑓

𝜕𝑦
) (ℎ

𝜕𝑓

𝜕𝑥
+ 𝑘

𝜕𝑓

𝜕𝑦
) 𝑓 

= (ℎ
𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
)
2

𝑓. 

 

Continuing in this way, we get 

𝜙(𝑛)(𝑡) = (ℎ
𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
)
𝑛

𝑓(𝑎 + 𝑡ℎ, 𝑏 + 𝑡𝑘)    − − − − − (∗). 

H.W.  Prove this by the Principle of Mathematical Induction. 

 

The Maclaurin series for single variable is 

𝜙(𝑡) = 𝜙(0) + 𝑡𝜙′(0) +
𝑡2

2!
𝜙′′(0) + ⋯+

𝑡𝑛−1

(𝑛 − 1)!
𝜙(𝑛−1)(0) +

𝑡𝑛

𝑛!
𝜙(𝑛)(𝜃𝑡), 

where  0 < 𝜃 < 1. 

 

Putting  𝑡 = 1 with  (∗), we get 
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𝜙(1) = 𝑓(𝑎 + ℎ, 𝑏 + 𝑘) 

= 𝑓(𝑎, 𝑏) + (ℎ
𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
)𝑓(𝑎, 𝑏) +

1

2!
(ℎ

𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
)
2

𝑓(𝑎, 𝑏) + ⋯ 

                                                 ⋯+
1

(𝑛 − 1)!
(ℎ

𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
)
𝑛−1

𝑓(𝑎, 𝑏) + 𝑅𝑛, 

where   

𝑅𝑛 =
1

𝑛!
(ℎ

𝜕

𝜕𝑥
+ 𝑘

𝜕

𝜕𝑦
)
𝑛

𝑓(𝑎 + 𝜃ℎ, 𝑏 + 𝜃𝑘), 0 < 𝜃 < 1. 

 

Remark: Putting  𝑎 + ℎ = 𝑥, 𝑏 + 𝑘 = 𝑦  or  ℎ = 𝑥 − 𝑎, 𝑘 = 𝑦 − 𝑏, we get 

𝑓(𝑥, 𝑦) = 𝑓(𝑎, 𝑏) + [(𝑥 − 𝑎)
𝜕

𝜕𝑥
+ (𝑦 − 𝑏)

𝜕

𝜕𝑦
]𝑓(𝑎, 𝑏)

+
1

2!
[(𝑥 − 𝑎)

𝜕

𝜕𝑥
+ (𝑦 − 𝑏)

𝜕

𝜕𝑦
]
2

𝑓(𝑎, 𝑏) + ⋯

+
1

(𝑛 − 1)!
[(𝑥 − 𝑎)

𝜕

𝜕𝑥
+ (𝑦 − 𝑏)

𝜕

𝜕𝑦
]
𝑛−1

𝑓(𝑎, 𝑏) + 𝑅𝑛, 

where   

𝑅𝑛 =
1

𝑛!
[(𝑥 − 𝑎)

𝜕

𝜕𝑥
+ (𝑦 − 𝑏)

𝜕

𝜕𝑦
]
𝑛

𝑓(𝑎 + (𝑥 − 𝑎)𝜃, 𝑏 + (𝑦 − 𝑏)𝜃), 0 < 𝜃 < 1. 

 

Example 3.14 Expand  𝑥2𝑦 + 3𝑦 − 2  in powers of  (𝑥 − 1)  and  (𝑦 + 2). 

 

 

 

 

 


