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MTS 00033 MULTIVARIATE CALCULUS 

 

7 INTEGRATION ON ℝ𝟑 

 

7.1 Line Integrals 

Definition 7.1  Parametric Curves 

A parametric curve in space is defined to be a vector valued function  Γ  whose domain is subset of  ℝ  

and the range is subset of ℝ3. The curve is continuous if the function Γ is continuous and is called a 

Jordan arc if  Γ  is one to one. 

 

Suppose that a curve  Γ  whose position vector  𝑟 = (𝑥, 𝑦, 𝑧) at any point can be parametrically 

represented by  Γ(t): 𝑟 = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡))   ; 𝑡 ∈ [𝑎, 𝑏], where  𝑡  is a parameter. Throughout this 

chapter, we assume  𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)  are single valued continuous functions and are continuously 

differentiable (smooth) unless otherwise stated alternatively. 

 

Theorem 7.1  Length of a curve 

If  𝑟(𝑡) is a smooth curve in ℝ𝟑 such that 𝑟′(𝑡) exist and continuous then the length of the curve from 

the point  𝑡 = 𝑎  to  𝑡 = 𝑏  is given by  

𝑙(𝑎, 𝑏) = ∫ |𝑟′
𝑏

𝑎

(𝑡)|𝑑𝑡 = ∫ √𝑥′(𝑡)2 + 𝑦′(𝑡)2 + 𝑧′(𝑡)2
𝑏

𝑎

. 

 

Example 7.1 Find the length of the curve 𝑥 = 𝑎𝑡2, 𝑦 = 2𝑎𝑡, 𝑧 = 𝑎𝑡;   0 ≤ 𝑡 ≤ 1. 

 

Definition 7.2  Line Integrals 

Let  𝐶  be a space curve defined by  𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡), 𝑧 = 𝑧(𝑡), 𝑎 ≤ 𝑡 ≤ 𝑏. Let 

 𝐹 = (𝑓, 𝑔 , ℎ) be a bounded vector valued function defined at every point of the curve 𝐶, where 𝑓 =

𝑓(𝑥, 𝑦, 𝑧), 𝑔 = 𝑔(𝑥, 𝑦, 𝑧), ℎ = ℎ(𝑥, 𝑦, 𝑧). Then, ∫ (𝑓𝑑𝑥 + 𝑔𝑑𝑦 + ℎ𝑑𝑧)
𝐶

  is called the line integral of 

𝐹 = (𝑓, 𝑔 , ℎ) along 𝐶. 

 

REMARK To evaluate the line integral  𝐿 = ∫ (𝑓𝑑𝑥 + 𝑔𝑑𝑦 + ℎ𝑑𝑧)
𝐶

: 

If 𝑟(𝑡) = 𝑥(𝑡)𝑖 + 𝑦(𝑡)𝑗 + 𝑧(𝑡)𝑘. Then, 

𝑑𝑟

𝑑𝑡
=

𝑑𝑥

𝑑𝑡
𝑖 +

𝑑𝑦

𝑑𝑡
𝑗 +

𝑑𝑧

𝑑𝑡
𝑘. 

Suppose that  𝐹 = 𝑓𝑖 + 𝑔𝑗 + ℎ𝑘. Then, 

𝐿 = ∫ (𝑓𝑖 + 𝑔𝑗 + ℎ𝑘) ∙ (
𝑑𝑥

𝑑𝑡
𝑖 +

𝑑𝑦

𝑑𝑡
𝑗 +

𝑑𝑧

𝑑𝑡
𝑘) 𝑑𝑡

𝐶

 

= ∫ (𝐹.
𝑑𝑟

𝑑𝑡
) 𝑑𝑡

𝑐

 

= ∫ 𝐹

𝑐

. 𝑑𝑟 
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Example 7.2 Prove that  ∫
𝑥2+𝑦2

𝑝
𝑑𝑠 =

𝜋𝑎𝑏

4
[4 + (𝑎2 + 𝑏2) (

1

𝑎2
+

1

𝑏2
)] when the integral is taken 

round the ellipse  
𝑥2

𝑎2 +
𝑦2

𝑏2 = 1 whose arc-length is denoted by  𝑠  and  𝑝  is the length of the 

perpendicular from the origin to the tangent of the ellipse. 

 

Example 7.3 Show that ∫ (𝑦2 + 𝑧2)𝑑𝑥 + (𝑧2 + 𝑥2)𝑑𝑦 + (𝑥2 + 𝑦2)𝑑𝑧 = −2𝜋𝑎𝑏2
𝑐

, where the curve 

𝑐 is the part for 𝑧 ≥ 0 at the intersection of the surfaces  𝑥2 + 𝑦2 + 𝑧2 = 2𝑎𝑥, 𝑥2 + 𝑦2 = 2𝑏𝑥; 𝑎 >

𝑏 > 0. 

 

7.2 The Surface Area 

Theorem 7.2 Let it be required to compute the area 𝒮 of a surface bounded by a curve 𝑐. The surface 

being defined by the equation  𝑧 = 𝜓(𝑥, 𝑦), where  𝜓  is continuous and has continuous partial 

derivatives. Let  Γ  be the projection of  𝑐  on the 𝑂𝑥𝑦 plane. Let  𝐷  be the domain on the 𝑂𝑥𝑦  plane 

bounded by  Γ  and  𝜎  be the area of  𝐷. Then, 

𝒮 = ∬ √1 + (
𝜕𝑧

𝜕𝑥
)

2

+ (
𝜕𝑧

𝜕𝑦
)

2

𝑑𝑥𝑑𝑦

𝐷

. 

Similarly, if the equation of the surface is of the form 𝑥 = 𝜃(𝑦, 𝑧), 𝑦 = 𝜙(𝑥, 𝑧), then the corresponding 

formulae for calculating the surface area ares of the form 

𝒮 = ∬ √1 + (
𝜕𝑥

𝜕𝑦
)

2

+ (
𝜕𝑥

𝜕𝑧
)

2

𝑑𝑦𝑑𝑧

𝐷

, 

𝒮 = ∬ √1 + (
𝜕𝑦

𝜕𝑥
)

2

+ (
𝜕𝑦

𝜕𝑧
)

2

𝑑𝑥𝑑𝑧

𝐷

, 

where 𝐷1, 𝐷2 are the domains in the  𝑦𝑧 − plane and 𝑥𝑧 − plane respectively in which the given surface 

is projected. 

 

Example 7.4 Compute the surface area of the sphere 𝑥2 + 𝑦2 + 𝑧2 = 𝑎2. 
 

Example 7.5 The 𝑥 𝑎𝑛𝑑 𝑦 coordinates of a point on the paraboloid  2𝑧 =
𝑥2

𝑎2 +
𝑦2

𝑏2 are expressed in 

the form  𝑥 = 𝑎 tan 𝜃 cos 𝜙 , 𝑦 = 𝑏 tan 𝜃 sin 𝜙, where 𝜃 is the angle of inclination of the normal at 

any point on the 𝑧 axis. Show that the area of the cap of the surface cut off by the curve 𝜃 = 𝜆 is 
2𝜋𝑎𝑏

3
(sec3𝜆 − 1). 

 

Example 7.6 Find the area of the surface of the cylinder 𝑥2 + 𝑦2 = 𝑎2 which is cut off by the 

cylinder  𝑥2 + 𝑧2 = 𝑎2. 

 

7.3 Surface Integrals 

7.3.1 Surface Integral of scalar functions 

Definition 7.3  Let 𝒮 be a (piece wise) smooth surface bounded by a (piece wise) smooth curve 𝐶. 

Let 𝑓(𝑥, 𝑦, 𝑧) be a bounded function defined at each point of the surface 𝒮. Then the surface integral 

of the first type of the function 𝑓 over the surface  𝒮  is defined and denoted by    
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∬𝑓(𝑥, 𝑦, 𝑧)𝑑
𝑠

𝒮 = ∬ 𝑓(𝑥, 𝑦, 𝑧(𝑥, 𝑦))
𝑑𝑥𝑑𝑦

𝑐𝑜𝑠𝛾𝐷

, 

where 𝛾 is the angle of inclination to the surface 𝒮 with 𝑧 − axis and  𝐷  is the projection of  𝒮  on 

𝑂𝑥𝑦 plane. 

To evaluate the surface integral, 

∬ 𝑓(𝑥, 𝑦, 𝑧(𝑥, 𝑦))
𝑑𝑥𝑑𝑦

𝑐𝑜𝑠𝛾𝐷

= ∬ 𝑓(𝑥, 𝑦, 𝑧(𝑥, 𝑦))√1 + (
𝜕𝑧

𝜕𝑥
)

2

+ (
𝜕𝑧

𝜕𝑦
)

2

𝑑𝑥𝑑𝑦
𝐷

. 

Remark: 

If the surface is represented by  𝑥 = 𝑥(𝑦, 𝑧)  or  𝑦 = 𝑦(𝑦, 𝑧), then 

∬𝑓(𝑥, 𝑦, 𝑧)𝑑
𝑠

𝒮 = ∬ 𝑓(𝑥(𝑦, 𝑧), 𝑦, 𝑧)√1 + (
𝜕𝑥

𝜕𝑦
)

2

+ (
𝜕𝑥

𝜕𝑧
)

2

𝑑𝑦𝑑𝑧
𝐷1

, 

where  𝐷1 is the projection of 𝒮 on 𝑦𝑧 −plane, or 

∬𝑓(𝑥, 𝑦, 𝑧)𝑑
𝑠

𝒮 = ∬ 𝑓(𝑥, 𝑦(𝑥, 𝑧), 𝑧)√1 + (
𝜕𝑦

𝜕𝑥
)

2

+ (
𝜕𝑦

𝜕𝑧
)

2

𝑑𝑥𝑑𝑧
𝐷2

, 

where  𝐷2  is the projection of 𝒮 on 𝑥𝑧 −plane. 

 

Example 7.7 Evaluate the surface integral ∫
1

𝑟
𝑑

𝑠
𝒮, where 𝒮  is portion of the hyperbolic paraboloid 

 𝑧 = 𝑥𝑦  cut off by the cylinder  𝑥2 + 𝑦2 = 𝑎2 and  𝑟  is the distance from a point on the surface to the 

𝑧 −axis. 

 

7.3.2 Surface Integrals of Vector Functions 

For the vector functions, suppose   𝐹(𝑥, 𝑦, 𝑧) = 𝑓(𝑥, 𝑦, 𝑧) 𝑖 + 𝑔(𝑥, 𝑦, 𝑧) 𝑗 + ℎ(𝑥, 𝑦, 𝑧) 𝑘  and  𝑛 =

cos 𝛼𝑖 + cos 𝛽 𝑗 + cos 𝛾 𝑘 . We have  𝑑𝑠 = 𝑑𝑦𝑑𝑧𝑖 + 𝑑𝑥𝑑𝑧𝑗 + 𝑑𝑥𝑑𝑦𝑘. Therefore,  

𝐹. 𝑛 = 𝑓 cos 𝛼 + 𝑔 cos 𝛽 + ℎ cos 𝛾,  and 

𝐹. 𝑑𝑠 = 𝑓𝑑𝑦𝑑𝑧 + 𝑔𝑑𝑥𝑑𝑧 + ℎ𝑑𝑥𝑑𝑦. 

Then, 

∫ 𝐹. 𝑛𝑑𝑠 = ∫𝐹𝑑𝑠
𝑠

.
𝑠

 

𝑖.e. 

∫(𝑓 cos 𝛼 + 𝑔 cos 𝛽 + ℎ cos 𝛾)𝑑𝑠

𝑠

 

= ∫ 𝑓𝑑𝑦𝑑𝑧 + 𝑔𝑑𝑥𝑑𝑧 + ℎ𝑑𝑥𝑑𝑦

𝑠

 

= ∫ 𝑓[𝑥(𝑦, 𝑧), 𝑦, 𝑧])𝑑𝑦𝑑𝑧 +

𝐷1

∫ 𝑔[𝑥, 𝑦(𝑥, 𝑧), 𝑧])𝑑𝑥𝑑𝑧 + ∫ ℎ[𝑥, 𝑦, 𝑧(𝑥, 𝑦)])𝑑𝑥𝑑𝑦

𝐷3𝐷2

. 

 

Example 7.8 Evaluate  ∬ 𝑥𝑑𝑦𝑑𝑧 + 𝑑𝑧𝑑𝑥 + 𝑥𝑧2
𝑠

𝑑𝑥𝑑𝑦 , where 𝑠 is the outer side of the part of the 

sphere 𝑥2 + 𝑦2 + 𝑧2 = 1 in the first octant. 
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7.3.3 Surface Integral of Parametric Surfaces 

If the surface is given parametrically by 𝑥 = 𝑥(𝑢, 𝑣), 𝑦 = 𝑦(𝑢, 𝑣), 𝑧 = 𝑧(𝑢, 𝑣) , 𝑢, 𝑣 ∈ 𝐷, then 

∬ ℎ𝑑𝑥𝑑𝑦 = ∬ ℎ[𝑥, 𝑦, 𝑧(𝑥, 𝑦)]
𝜕(𝑥, 𝑦)

𝜕(𝑢, 𝑣)𝐷∗𝑆

𝑑𝑢𝑑𝑣 − − − − − (1) 

∬𝑓𝑑𝑦𝑑𝑧
𝑆

= ∬ 𝑓[𝑥(𝑦, 𝑧), 𝑦, 𝑧]
𝜕(𝑦, 𝑧)

𝜕(𝑢, 𝑣)
𝑑𝑢𝑑𝑣

𝐷∗

− − − − − (2) 

∬𝑔𝑑𝑥𝑑𝑧
𝑆

= ∬ 𝑔[𝑥, 𝑦(𝑥, 𝑧), 𝑧]
𝜕(𝑧, 𝑥)

𝜕(𝑢, 𝑣)
𝑑𝑢𝑑𝑣

𝐷∗

− − − − − (3) 

∬ℎ𝑑𝑥𝑑𝑦 + 𝑓𝑑𝑦𝑑𝑧 + 𝑔𝑑𝑥𝑑𝑧
𝑆

= (1) + (2) + (3) 

where 𝐷∗ is the region in 𝑢𝑣 −plane oriented in the same sense as 𝒮. 

 

Example 7.9 Evaluate ∫ 𝑦𝑧𝑑𝑦𝑑𝑧 + 𝑧𝑥𝑑𝑧𝑑𝑥 + 𝑥𝑦𝑑𝑥𝑑𝑦
𝑠

 , where 𝒮  is the surface of the sphere  𝑥2 +

𝑦2 + 𝑧2 = 1 in the first octant. 

 

7.4 Volumes by Double Integrals 

7.4.1 Volume of the cylindrical solid 

Definition 7.4  Let the volume be bounded above by the surface  𝑆:  𝑧 = 𝜓(𝑥, 𝑦)  and below by 

the projection  𝐷1  of  𝑆  on  𝑂𝑥𝑦 plane. Then, the volume  𝑉  bounded by theses surfaces is given by 

𝑉 = ∬ 𝑧𝑑𝑥𝑑𝑦
𝐷1

 

= ∬ 𝜓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝐷1

 

= ∬ 𝑧 cos 𝛾 𝑑𝑠
𝐷1

. 

 

To evaluate this, 

𝑉 = ∫ {∫ 𝜓
𝜙2(𝑥)

𝑦=𝜙1(𝑥)

𝑑𝑦} 𝑑𝑥
𝑏

𝑥=𝑎

. 

Exercises: 

Write down the equation of a volume if it is 

(i) bounded above by 𝑥 = 𝜃(𝑦, 𝑧) and below by 𝐷2. 

(ii) bounded above by 𝑦 = 𝜙(𝑥, 𝑧) and below by𝐷3. 

 

7.4.2 Volume Bounded by two surfaces 

Let the volume be bounded above by the surface  𝑆1:  𝑧 = 𝜓1(𝑥, 𝑦)  and below by  𝑆2:  𝑧 = 𝜓2(𝑥, 𝑦). 

Then, the volume  𝑉  bounded by theses surfaces is given by 

𝑉 = ∬ 𝑧𝑑𝑥𝑑𝑦
𝐷1

 

= ∫ {∫ (𝜓1 − 𝜓2)
𝜙2(𝑥)

𝑦=𝜙1(𝑥)

𝑑𝑦} 𝑑𝑥
𝑏

𝑥=𝑎

. 

 

Example 7.10 Find the volume within the cylinder  𝑥2 + 𝑦2 = 𝑎2between the planes 𝑦 + 𝑧 = 𝑏2 

and  𝑧 = 0. 
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Example 7.11 Find the volume of the solid bounded by the surface 𝑧 = 1 − 4𝑥2 − 𝑦2 and the plane 

𝑧 = 0. 

 

7.5 Triple integrals 

Here, we are intend to evaluate the integrals of the type 

𝐼 = ∭ 𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑥𝑑𝑦𝑑𝑧

𝑣

 

over the closed boundary  𝑣 of the region. In particular, the volume is obtained by 

𝑉 = ∭ 𝑑𝑥𝑑𝑦𝑑𝑧

𝑣

. 

To evaluate, project onto coordinate plane, for example 𝑂𝑥𝑦- plane, and then evaluate the double 

integral. For example, to evaluate ∭ 𝑓(𝑥, 𝑦, 𝑧) 𝑑𝑥𝑑𝑦𝑑𝑧
𝑣

  over the sphere  𝑥2 + 𝑦2 + 𝑧2 = 𝑎2, we use 

                            

∫ 𝑓

𝑣

𝑑𝑥𝑑𝑦𝑑𝑧 = ∫ ∫ ∫ 𝑓
√𝑎2−𝑥2−𝑦2

−√𝑎2−𝑥2−𝑦2

𝑑𝑧𝑑𝑦𝑑𝑥
√𝑎2−𝑥2

−√𝑎2−𝑥2

𝑎

−𝑎

. 

 

Change of Variables 

In the case of change of variables from the Cartesian coordinate system  (𝑥, 𝑦, 𝑧)  to the curvilinear 

coordinate system  (𝑢, 𝑣, 𝑤), we use 

∫ 𝑓

𝑣

𝑑𝑥𝑑𝑦𝑑𝑧 = ∫ 𝐹(𝑢, 𝑣, 𝑤)

𝑣

|𝐽|𝑑𝑢𝑑𝑣𝑑𝑤, 

where  𝐽 =
𝜕(𝑥,𝑦,𝑧)

𝜕(𝑢,𝑣,𝑤)
 is the jacobian of the transformation. 

 

Special cases 

1. Cylindrical polar coordinates(𝜌, 𝜙, 𝑧) 

𝑥 = 𝜌 cos 𝜙      𝑦 = sin 𝜙 ,     𝑧 = 𝑧. 

𝐽 = ℎ𝜌ℎ𝜙ℎ𝑧 = 1. 𝜌. 1 = 𝜌. 

2. Spherical polar coordinates(𝑟, 𝜃, 𝜙) 

𝑥 = 𝑟 sin 𝜃 cos 𝜙 , 𝑦 = 𝑟 sin 𝜃 sin 𝜙 , 𝑧 = 𝑟 cos 𝜃. 

𝐽 = ℎ𝑟ℎ𝜃ℎ𝜙 = 1. 𝑟. 𝑟 sin 𝜃 = 𝑟2 sin2 𝜃. 

 

Example 7.12  Compute the integral ∫ 𝑥𝑦𝑧
𝑣

𝑑𝑥𝑑𝑦𝑑𝑧 over a domain bounded by coordinate 

planes and the plane  𝑥 + 𝑦 + 𝑧 = 1. 
 

Example 7.13  Compute the volume of ellipsoid  
𝑥2

𝑎2 +
𝑦2

𝑏2 +
𝑧2

𝑐2 = 1. 

 

Exercise: Deduce the volume of the sphere 𝑥2 + 𝑦2 + 𝑧2 = 9. 

 

Example 7.14 Compute ∭ √1 −
𝑥2

𝑎2
−

𝑦2

𝑏2
−

𝑧2

𝑐2
𝑑𝑥𝑑𝑦𝑑𝑧 over the region  

𝑥2

𝑎2
+

𝑦2

𝑏2
+

𝑧2

𝑐2
≤ 1. 

 

 


