7 INTEGRATION ON \mathbb{R}^{3}

7.1 Line Integrals

Definition 7.1 Parametric Curves

A parametric curve in space is defined to be a vector valued function Γ whose domain is subset of \mathbb{R} and the range is subset of \mathbb{R}^{3}. The curve is continuous if the function Γ is continuous and is called a Jordan arc if Γ is one to one.

Suppose that a curve Γ whose position vector $\underline{r}=(x, y, z)$ at any point can be parametrically represented by $\Gamma(\mathrm{t}): \underline{r}=(x(t), y(t), z(t)) ; t \in[a, b]$, where t is a parameter. Throughout this chapter, we assume $x(t), y(t), z(t)$ are single valued continuous functions and are continuously differentiable (smooth) unless otherwise stated alternatively.

Theorem 7.1 Length of a curve

If $r(t)$ is a smooth curve in \mathbb{R}^{3} such that $r^{\prime}(t)$ exist and continuous then the length of the curve from the point $t=a$ to $t=b$ is given by

$$
l(a, b)=\int_{a}^{b}\left|r^{\prime}(t)\right| d t=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}+z^{\prime}(t)^{2}} .
$$

Example 7.1 Find the length of the curve $x=a t^{2}, y=2 a t, z=a t ; \quad 0 \leq t \leq 1$.

Definition $7.2 \quad$ Line Integrals

Let C be a space curve defined by $x=x(t), y=y(t), z=z(t), a \leq t \leq b$. Let $F=(f, g, h)$ be a bounded vector valued function defined at every point of the curve C, where $f=$ $f(x, y, z), g=g(x, y, z), h=h(x, y, z)$. Then, $\int_{C}(f d x+g d y+h d z)$ is called the line integral of $F=(f, g, h)$ along C.

REMARK To evaluate the line integral $L=\int_{C}(f d x+g d y+h d z)$:
If $\underline{r}(t)=x(t) \underline{i}+y(t) \underline{j}+z(t) \underline{k}$. Then,

$$
\frac{d \underline{r}}{d t}=\frac{d \underline{x}}{d t} \underline{i}+\frac{d \underline{y}}{d t} \underline{j}+\frac{d \underline{z}}{d t} \underline{k}
$$

Suppose that $\underline{F}=f \underline{i}+g \underline{j}+h \underline{k}$. Then,

$$
\begin{aligned}
L & =\int_{C}(f \underline{i}+g \underline{j}+h \underline{k}) \cdot\left(\frac{d \underline{x}}{d t} \underline{i}+\frac{d \underline{y}}{d t} \underline{j}+\frac{d \underline{z}}{d t} \underline{k}\right) d t \\
& =\int_{c}\left(\underline{F} \cdot \frac{d \underline{r}}{d t}\right) d t \\
& =\int_{c} \underline{F} \cdot d \underline{r}
\end{aligned}
$$

Example 7.2 Prove that $\int \frac{x^{2}+y^{2}}{p} d s=\frac{\pi a b}{4}\left[4+\left(a^{2}+b^{2}\right)\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right)\right]$ when the integral is taken round the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ whose arc-length is denoted by s and p is the length of the perpendicular from the origin to the tangent of the ellipse.

Example 7.3 Show that $\int_{c}\left(y^{2}+z^{2}\right) d x+\left(z^{2}+x^{2}\right) d y+\left(x^{2}+y^{2}\right) d z=-2 \pi a b^{2}$, where the curve c is the part for $z \geq 0$ at the intersection of the surfaces $x^{2}+y^{2}+z^{2}=2 a x, x^{2}+y^{2}=2 b x ; a>$ $b>0$.

7.2 The Surface Area

Theorem 7.2 Let it be required to compute the area \mathcal{S} of a surface bounded by a curve c. The surface being defined by the equation $z=\psi(x, y)$, where ψ is continuous and has continuous partial derivatives. Let Γ be the projection of c on the $O x y$ plane. Let D be the domain on the $O x y$ plane bounded by Γ and σ be the area of D. Then,

$$
\mathcal{S}=\iint_{D} \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d x d y
$$

Similarly, if the equation of the surface is of the form $x=\theta(y, z), y=\phi(x, z)$, then the corresponding formulae for calculating the surface area ares of the form

$$
\begin{aligned}
& \mathcal{S}=\iint_{D} \sqrt{1+\left(\frac{\partial x}{\partial y}\right)^{2}+\left(\frac{\partial x}{\partial z}\right)^{2}} d y d z \\
& \mathcal{S}=\iint_{D} \sqrt{1+\left(\frac{\partial y}{\partial x}\right)^{2}+\left(\frac{\partial y}{\partial z}\right)^{2}} d x d z
\end{aligned}
$$

where D_{1}, D_{2} are the domains in the $y z$ - plane and $x z$ - plane respectively in which the given surface is projected.

Example 7.4 Compute the surface area of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$.
Example 7.5 The x and y coordinates of a point on the paraboloid $2 z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ are expressed in the form $x=a \tan \theta \cos \phi, y=b \tan \theta \sin \phi$, where θ is the angle of inclination of the normal at any point on the z axis. Show that the area of the cap of the surface cut off by the curve $\theta=\lambda$ is $\frac{2 \pi a b}{3}\left(\sec ^{3} \lambda-1\right)$.

Example 7.6 Find the area of the surface of the cylinder $x^{2}+y^{2}=a^{2}$ which is cut off by the cylinder $x^{2}+z^{2}=a^{2}$.

7.3 Surface Integrals

7.3.1 Surface Integral of scalar functions

Definition 7.3 Let \mathcal{S} be a (piece wise) smooth surface bounded by a (piece wise) smooth curve C. Let $f(x, y, z)$ be a bounded function defined at each point of the surface \mathcal{S}. Then the surface integral of the first type of the function f over the surface \mathcal{S} is defined and denoted by

$$
\iint_{S} f(x, y, z) d \mathcal{S}=\iint_{D} f(x, y, z(x, y)) \frac{d x d y}{\cos \gamma}
$$

where γ is the angle of inclination to the surface \mathcal{S} with $z-$ axis and D is the projection of \mathcal{S} on Oxy plane.
To evaluate the surface integral,

$$
\iint_{D} f(x, y, z(x, y)) \frac{d x d y}{\cos \gamma}=\iint_{D} f(x, y, z(x, y)) \sqrt{1+\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}} d x d y
$$

Remark:

If the surface is represented by $x=x(y, z)$ or $y=y(y, z)$, then

$$
\iint_{S} f(x, y, z) d \mathcal{S}=\iint_{D_{1}} f(x(y, z), y, z) \sqrt{1+\left(\frac{\partial x}{\partial y}\right)^{2}+\left(\frac{\partial x}{\partial z}\right)^{2}} d y d z
$$

where D_{1} is the projection of \mathcal{S} on $y z$-plane, or

$$
\iint_{S} f(x, y, z) d \mathcal{S}=\iint_{D_{2}} f(x, y(x, z), z) \sqrt{1+\left(\frac{\partial y}{\partial x}\right)^{2}+\left(\frac{\partial y}{\partial z}\right)^{2}} d x d z
$$

where D_{2} is the projection of \mathcal{S} on $x z$-plane.
Example 7.7 Evaluate the surface integral $\int_{s} \frac{1}{r} d \mathcal{S}$, where \mathcal{S} is portion of the hyperbolic paraboloid $z=x y$ cut off by the cylinder $x^{2}+y^{2}=a^{2}$ and r is the distance from a point on the surface to the z-axis.

7.3.2 Surface Integrals of Vector Functions

For the vector functions, suppose $\underline{F}(x, y, z)=f(x, y, z) \underline{i}+g(x, y, z) \underline{j}+h(x, y, z) \underline{k}$ and $\underline{n}=$ $\cos \alpha \underline{i}+\cos \beta \underline{j}+\cos \gamma \underline{k}$. We have $d \underline{s}=d y d z \underline{i}+d x d z \underline{j}+d x d y \underline{k}$. Therefore,
$\underline{F} \cdot \underline{n}=f \cos \alpha+g \cos \beta+h \cos \gamma$, and
$\underline{F} \cdot d \underline{s}=f d y d z+g d x d z+h d x d y$.
Then,

$$
\int_{s} \underline{F} \cdot \underline{n} d \underline{s}=\int_{s} \underline{F} d \underline{s} .
$$

i.e.

$$
\begin{aligned}
\int_{s}(f \cos & \alpha+g \cos \beta+h \cos \gamma) d s \\
\quad & =\int_{s} f d y d z+g d x d z+h d x d y \\
\quad & \left.\left.\left.=\int_{D_{1}} f[x(y, z), y, z]\right) d y d z+\int_{D_{2}} g[x, y(x, z), z]\right) d x d z+\int_{D_{3}} h[x, y, z(x, y)]\right) d x d y .
\end{aligned}
$$

Example 7.8 Evaluate $\iint_{s} x d y d z+d z d x+x z^{2} d x d y$, where s is the outer side of the part of the sphere $x^{2}+y^{2}+z^{2}=1$ in the first octant.

7.3.3 Surface Integral of Parametric Surfaces

If the surface is given parametrically by $x=x(u, v), y=y(u, v), z=z(u, v), u, v \in D$, then

$$
\begin{gather*}
\iint_{S} h d x d y=\iint_{D^{*}} h[x, y, z(x, y)] \frac{\partial(x, y)}{\partial(u, v)} d u d v----(1) \tag{1}\\
\iint_{S} f d y d z=\iint_{D^{*}} f[x(y, z), y, z] \frac{\partial(y, z)}{\partial(u, v)} d u d v----(2) \tag{2}\\
\iint_{S} g d x d z=\iint_{D^{*}} g[x, y(x, z), z] \frac{\partial(z, x)}{\partial(u, v)} d u d v----(3) \tag{3}\\
\iint_{S} h d x d y+f d y d z+g d x d z=(1)+(2)+(3)
\end{gather*}
$$

where D^{*} is the region in $u v$-plane oriented in the same sense as \mathcal{S}.
Example 7.9 Evaluate $\int_{s} y z d y d z+z x d z d x+x y d x d y$, where \mathcal{S} is the surface of the sphere $x^{2}+$ $y^{2}+z^{2}=1$ in the first octant.

7.4 Volumes by Double Integrals

7.4.1 Volume of the cylindrical solid

Definition 7.4 Let the volume be bounded above by the surface $S: z=\psi(x, y)$ and below by the projection D_{1} of S on $O x y$ plane. Then, the volume V bounded by theses surfaces is given by

$$
\begin{aligned}
V & =\iint_{D_{1}} z d x d y \\
& =\iint_{D_{1}} \psi(x, y) d x d y \\
& =\iint_{D_{1}} z \cos \gamma d s
\end{aligned}
$$

To evaluate this,

$$
V=\int_{x=a}^{b}\left\{\int_{y=\phi_{1}(x)}^{\phi_{2}(x)} \psi d y\right\} d x
$$

Exercises:

Write down the equation of a volume if it is
(i) bounded above by $x=\theta(y, z)$ and below by D_{2}.
(ii) bounded above by $y=\phi(x, z)$ and below by D_{3}.

7.4.2 Volume Bounded by two surfaces

Let the volume be bounded above by the surface $S_{1}: z=\psi_{1}(x, y)$ and below by $S_{2}: z=\psi_{2}(x, y)$. Then, the volume V bounded by theses surfaces is given by

$$
\begin{aligned}
V & =\iint_{D_{1}} z d x d y \\
& =\int_{x=a}^{b}\left\{\int_{y=\phi_{1}(x)}^{\phi_{2}(x)}\left(\psi_{1}-\psi_{2}\right) d y\right\} d x .
\end{aligned}
$$

Example 7.10 Find the volume within the cylinder $x^{2}+y^{2}=a^{2}$ between the planes $y+z=b^{2}$ and $z=0$.

Example 7.11 Find the volume of the solid bounded by the surface $z=1-4 x^{2}-y^{2}$ and the plane $z=0$.

7.5 Triple integrals

Here, we are intend to evaluate the integrals of the type

$$
I=\iiint_{v} f(x, y, z) d x d y d z
$$

over the closed boundary v of the region. In particular, the volume is obtained by

$$
V=\iiint_{v} d x d y d z
$$

To evaluate, project onto coordinate plane, for example $O x y$ - plane, and then evaluate the double integral. For example, to evaluate $\iiint_{v} f(x, y, z) d x d y d z$ over the sphere $x^{2}+y^{2}+z^{2}=a^{2}$, we use

$$
\int_{v} f d x d y d z=\int_{-a}^{a} \int_{-\sqrt{a^{2}-x^{2}}}^{\sqrt{a^{2}-x^{2}}} \int_{-\sqrt{a^{2}-x^{2}-y^{2}}}^{\sqrt{a^{2}-x^{2}-y^{2}}} f d z d y d x
$$

Change of Variables

In the case of change of variables from the Cartesian coordinate system (x, y, z) to the curvilinear coordinate system (u, v, w), we use

$$
\int_{v} f d x d y d z=\int_{v} F(u, v, w)|J| d u d v d w
$$

where $J=\frac{\partial(x, y, z)}{\partial(u, v, w)}$ is the jacobian of the transformation.

Special cases

1. Cylindrical polar coordinates (ρ, ϕ, z)

$$
\begin{gathered}
x=\rho \cos \phi \quad y=\sin \phi, \quad z=z . \\
J=h_{\rho} h_{\phi} h_{z}=1 . \rho .1=\rho .
\end{gathered}
$$

2. Spherical polar coordinates (r, θ, ϕ)

$$
\begin{gathered}
x=r \sin \theta \cos \phi, \quad y=r \sin \theta \sin \phi, \quad z=r \cos \theta . \\
J=h_{r} h_{\theta} h_{\phi}=1 . r . r \sin \theta=r^{2} \sin ^{2} \theta .
\end{gathered}
$$

Example 7.12 Compute the integral $\int_{v} x y z d x d y d z$ over a domain bounded by coordinate planes and the plane $x+y+z=1$.

Example 7.13 Compute the volume of ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
Exercise: \quad Deduce the volume of the sphere $x^{2}+y^{2}+z^{2}=9$.

Example 7.14 Compute $\iiint \sqrt{1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}} d x d y d z$ over the region $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}} \leq 1$.

