
Software Processes

ITM 32023
Software Engineering

MSF.Fayaza

Topics covered

• Software process models

• Process activities

• Coping with change

• Process improvement

The software process

• A structured set of activities required to develop a
software system.

• Many different software processes but all involve:
▫ Specification – defining what the system should do;
▫ Design and implementation – defining the

organization of the system and implementing the
system;

▫ Validation – checking that it does what the customer
wants;

▫ Evolution – changing the system in response to
changing customer needs.

The software process Model

‘A software process model is an abstract
representation of a process. It presents a description
of a process from some particular perspective’

 - Sommerville

Software process models

• The waterfall model
▫ Plan-driven model. Separate and distinct phases of

specification and development.
• Incremental development

▫ Specification, development and validation are
interleaved. May be plan-driven or agile.

• Integration and configuration
▫ The system is assembled from existing configurable

components. May be plan-driven or agile.

• In practice, most large systems are developed using
a process that incorporates elements from all of
these models.

The waterfall model

Waterfall model phases

• There are separate identified phases in the
waterfall model:
▫ Requirements analysis and definition

▫ System and software design

▫ Implementation and unit testing

▫ Integration and system testing

▫ Operation and maintenance

Waterfall model problems

• The main drawback of the waterfall model is the
difficulty of accommodating change after the
process is underway. In principle, a phase has to be
complete before moving onto the next phase.

• Inflexible partitioning of the project into distinct
stages makes it difficult to respond to changing
customer requirements.
▫ Therefore, this model is only appropriate when the

requirements are well-understood and changes will be
fairly limited during the design process.

▫ Few business systems have stable requirements.

Waterfall model Applicability

• The waterfall model is mostly used for large
systems engineering projects where a system is
developed at several sites.
▫ In those circumstances, the plan-driven nature of

the waterfall model helps coordinate the work.

• Routine types of projects where requirements
are well understood

Advantages of waterfall model

• Enforce a disciplined approach for software
development

• Documents are produced at each stage. This
improves the visibility of the project.

Incremental development

Incremental development benefits

• The cost of accommodating changing customer
requirements is reduced.
▫ The amount of analysis and documentation that has to be

redone is much less than is required with the waterfall
model.

• It is easier to get customer feedback on the development
work that has been done.
▫ Customers can comment on demonstrations of the software

and see how much has been implemented.
• More rapid delivery and deployment of useful software

to the customer is possible.
▫ Customers are able to use and gain value from the software

earlier than is possible with a waterfall process.

Incremental development problems

• The process is not visible.
▫ Managers need regular deliverables to measure

progress. If systems are developed quickly, it is not
cost-effective to produce documents that reflect every
version of the system.

• System structure tends to degrade as new
increments are added.
▫ Unless time and money is spent on refactoring to

improve the software, regular change tends to corrupt
its structure. Incorporating further software changes
becomes increasingly difficult and costly.

Integration and configuration

• Based on software reuse where systems are
integrated from existing components or
application systems (sometimes called COTS -
Commercial-off-the-shelf) systems).

• Reused elements may be configured to adapt
their behaviour and functionality to a user’s
requirements

• Reuse is now the standard approach for
building many types of business system

Types of reusable software

• Stand-alone application systems (sometimes called
COTS) that are configured for use in a particular
environment.

• Collections of objects that are developed as a
package to be integrated with a component
framework such as .NET or J2EE.

• Web services that are developed according to
service standards and which are available for
remote invocation.

Reuse-oriented software engineering

Key process stages

• Requirements specification

• Software discovery and evaluation

• Requirements refinement

• Application system configuration

• Component adaptation and integration

Advantages and disadvantages

• Reduced costs and risks as less software is
developed from scratch

• Faster delivery and deployment of system

• But requirements compromises are inevitable so
system may not meet real needs of users

• Loss of control over evolution of reused system
elements

Process activities

Process activities

• Real software processes are inter-leaved sequences of
technical, collaborative and managerial activities with
the overall goal of specifying, designing, implementing
and testing a software system.

• The four basic process activities of specification,
development, validation and evolution are organized
differently in different development processes.

• For example, in the waterfall model, they are organized
in sequence, whereas in incremental development they
are interleaved.

The requirements engineering process

Software specification

• The process of establishing what services are required
and the constraints on the system’s operation and
development.

• Requirements engineering process
▫ Requirements elicitation and analysis

 What do the system stakeholders require or expect from
the system?

▫ Requirements specification
 Defining the requirements in detail

▫ Requirements validation
 Checking the validity of the requirements

Software design and implementation

• The process of converting the system
specification into an executable system.

• Software design
▫ Design a software structure that realises the

specification;
• Implementation

▫ Translate this structure into an executable
program;

• The activities of design and implementation are
closely related and may be inter-leaved.

A general model of the design process

Design activities
• Architectural design, where you identify the overall

structure of the system, the principal components
(subsystems or modules), their relationships and how
they are distributed.

• Database design, where you design the system data
structures and how these are to be represented in a
database.

• Interface design, where you define the interfaces
between system components.

• Component selection and design, where you search for
reusable components. If unavailable, you design how it
will operate.

System implementation

• The software is implemented either by developing a
program or programs or by configuring an
application system.

• Design and implementation are interleaved
activities for most types of software system.

• Programming is an individual activity with no
standard process.

• Debugging is the activity of finding program faults
and correcting these faults.

Software validation
• Verification and validation (V & V) is intended to

show that a system conforms to its specification and
meets the requirements of the system customer.

• Involves checking and review processes and system
testing.

• System testing involves executing the system with
test cases that are derived from the specification of
the real data to be processed by the system.

• Testing is the most commonly used V & V activity.

Stages of testing

Testing stages

• Component testing
▫ Individual components are tested independently;
▫ Components may be functions or objects or

coherent groupings of these entities.
• System testing

▫ Testing of the system as a whole. Testing of
emergent properties is particularly important.

• Customer testing
▫ Testing with customer data to check that the

system meets the customer’s needs.

Testing phases in a plan-driven
software process (V-model)

Software evolution

• Software is inherently flexible and can change.

• As requirements change through changing business
circumstances, the software that supports the
business must also evolve and change.

• Although there has been a demarcation between
development and evolution (maintenance) this is
increasingly irrelevant as fewer and fewer systems
are completely new.

System evolution

Coping with change

Coping with change

• Change is inevitable in all large software projects.
▫ Business changes lead to new and changed system

requirements
▫ New technologies open up new possibilities for

improving implementations
▫ Changing platforms require application changes

• Change leads to rework so the costs of change
include both rework (e.g. re-analyzing
requirements) as well as the costs of implementing
new functionality

Reducing the costs of rework

• Change anticipation, where the software process
includes activities that can anticipate possible changes
before significant rework is required.
▫ For example, a prototype system may be developed to

show some key features of the system to customers.

• Change tolerance, where the process is designed so that
changes can be accommodated at relatively low cost.
▫ This normally involves some form of incremental

development. Proposed changes may be implemented in
increments that have not yet been developed. If this is
impossible, then only a single increment (a small part of the
system) may have be altered to incorporate the change.

Coping with changing requirements

• System prototyping, where a version of the
system or part of the system is developed
quickly to check the customer’s requirements
and the feasibility of design decisions. This
approach supports change anticipation.

• Incremental delivery, where system increments
are delivered to the customer for comment and
experimentation. This supports both change
avoidance and change tolerance.

Software prototyping

• A prototype is an initial version of a system
used to demonstrate concepts and try out design
options.

• A prototype can be used in:
▫ The requirements engineering process to help

with requirements elicitation and validation;
▫ In design processes to explore options and

develop a UI design;
▫ In the testing process to run back-to-back tests.

Benefits of prototyping

• Improved system usability.

• A closer match to users’ real needs.

• Improved design quality.

• Improved maintainability.

• Reduced development effort.

The process of prototype development

Prototype development

• May be based on rapid prototyping languages
or tools

• May involve leaving out functionality
▫ Prototype should focus on areas of the product

that are not well-understood;

▫ Error checking and recovery may not be included
in the prototype;

▫ Focus on functional rather than non-functional
requirements such as reliability and security

Throw-away prototypes

• Prototypes should be discarded after
development as they are not a good basis for a
production system:
▫ It may be impossible to tune the system to meet

non-functional requirements;

▫ Prototypes are normally undocumented;

▫ The prototype structure is usually degraded
through rapid change;

▫ The prototype probably will not meet normal
organizational quality standards.

Incremental delivery

• Rather than deliver the system as a single delivery,
the development and delivery is broken down into
increments with each increment delivering part of
the required functionality.

• User requirements are prioritised and the highest
priority requirements are included in early
increments.

• Once the development of an increment is started,
the requirements are frozen though requirements
for later increments can continue to evolve.

Incremental development and delivery

• Incremental development
▫ Develop the system in increments and evaluate each

increment before proceeding to the development of
the next increment;

▫ Normal approach used in agile methods;
▫ Evaluation done by user/customer proxy.

• Incremental delivery
▫ Deploy an increment for use by end-users;
▫ More realistic evaluation about practical use of

software;
▫ Difficult to implement for replacement systems as

increments have less functionality than the system
being replaced.

Incremental delivery

Incremental delivery advantages

• Customer value can be delivered with each
increment so system functionality is available
earlier.

• Early increments act as a prototype to help elicit
requirements for later increments.

• Lower risk of overall project failure.

• The highest priority system services tend to
receive the most testing.

Incremental delivery problems

• Most systems require a set of basic facilities that are
used by different parts of the system.
▫ As requirements are not defined in detail until an

increment is to be implemented, it can be hard to
identify common facilities that are needed by all
increments.

• The essence of iterative processes is that the
specification is developed in conjunction with the
software.
▫ However, this conflicts with the procurement model

of many organizations, where the complete system
specification is part of the system development
contract.

Process improvement

Process improvement

• Many software companies have turned to
software process improvement as a way of
enhancing the quality of their software, reducing
costs or accelerating their development
processes.

• Process improvement means understanding
existing processes and changing these processes
to increase product quality and/or reduce costs
and development time.

Approaches to improvement

• The process maturity approach, which focuses on
improving process and project management and
introducing good software engineering practice.
▫ The level of process maturity reflects the extent to

which good technical and management practice has
been adopted in organizational software development
processes.

• The agile approach, which focuses on iterative
development and the reduction of overheads in the
software process.
▫ The primary characteristics of agile methods are rapid

delivery of functionality and responsiveness to
changing customer requirements.

The process improvement cycle

Process improvement activities

• Process measurement
▫ You measure one or more attributes of the software process or

product. These measurements forms a baseline that helps you
decide if process improvements have been effective.

• Process analysis
▫ The current process is assessed, and process weaknesses and

bottlenecks are identified. Process models (sometimes called
process maps) that describe the process may be developed.

• Process change
▫ Process changes are proposed to address some of the identified

process weaknesses. These are introduced and the cycle resumes
to collect data about the effectiveness of the changes.

Process measurement

• Wherever possible, quantitative process data
should be collected
▫ However, where organisations do not have clearly defined

process standards this is very difficult as you don’t know what to
measure. A process may have to be defined before any
measurement is possible.

• Process measurements should be used to
assess process improvements
▫ But this does not mean that measurements should drive the

improvements. The improvement driver should be the
organizational objectives.

Process metrics

• Time taken for process activities to be
completed
▫ E.g. Calendar time or effort to complete an

activity or process.

• Resources required for processes or activities
▫ E.g. Total effort in person-days.

• Number of occurrences of a particular event
▫ E.g. Number of defects discovered.

Capability maturity levels

The SEI capability maturity model

• Initial
▫ Essentially uncontrolled

• Repeatable
▫ Product management procedures defined and used

• Defined
▫ Process management procedures and strategies

defined and used

• Managed
▫ Quality management strategies defined and used

• Optimising
▫ Process improvement strategies defined and used

Key points

• Software processes are the activities involved in
producing a software system. Software process
models are abstract representations of these
processes.

• General process models describe the organization of
software processes.
▫ Examples of these general models include the

‘waterfall’ model, incremental development, and
reuse-oriented development.

• Requirements engineering is the process of
developing a software specification.

Key points

• Design and implementation processes are concerned
with transforming a requirements specification into an
executable software system.

• Software validation is the process of checking that the
system conforms to its specification and that it meets the
real needs of the users of the system.

• Software evolution takes place when you change
existing software systems to meet new requirements.
The software must evolve to remain useful.

• Processes should include activities such as prototyping
and incremental delivery to cope with change.

Key points

• Processes may be structured for iterative
development and delivery so that changes may be
made without disrupting the system as a whole.

• The principal approaches to process improvement
are agile approaches, geared to reducing process
overheads, and maturity-based approaches based
on better process management and the use of good
software engineering practice.

• The SEI process maturity framework identifies
maturity levels that essentially correspond to the
use of good software engineering practice.

