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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS 
 
1.1 Introduction 
 
Differential Equations: An equation involving the independent variables, dependent 
variables and derivatives of dependent variables with respect to independent variables. 
 
Examples of Differential equations: 

1.     𝑥2  (
𝑑2𝑦

𝑑𝑥2
)

4

+ 2𝑥 (
𝑑𝑦

𝑑𝑥
)

3

+ 𝑦 = 𝑥2 + 3.                      2.    
𝑑2𝑥

𝑑𝑡2
+ 𝜔2𝑥 = sin 𝑥. 

3.     𝑘
𝑑2𝑦

𝑑𝑥2
= [1 + (

𝑑𝑦

𝑑𝑥
)

2

]

3/2

.                                              4.    𝑦 = 𝑥
𝑑𝑦

𝑑𝑥
+

𝑘

𝑑𝑦
𝑑𝑥

. 

5.     
𝑑2𝑦

𝑑𝑥2
=

𝑊

𝐻
 √1 + (

𝑑𝑦

𝑑𝑥
)

2

.                                               6.   (
𝑑3𝑦

𝑑𝑥3
)

2

+ 2
𝑑2𝑦

𝑑𝑥2

𝑑𝑦

𝑑𝑥
+ 𝑥2 (

𝑑𝑦

𝑑𝑥
)

3

= 0. 

7.     
𝜕3𝑈

𝜕𝑡3
= 𝑘 (

𝜕2𝑈

𝜕𝑥2
)

2

.                                                        8.   (𝑥2 + 𝑦2)𝑑𝑥 − 2𝑥𝑦𝑑𝑦 = 0. 
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1.2 Classification of Differential Equations 
 

Type   Two main classes:   

Ordinary differential equation (ODE):   An equation containing only one independent 

variable  and derivatives of dependent variables with respect to this independent variable.  

Partial differential equation (PDE):  An Equation that contains two or more 

independent variables partial derivatives and partial derivatives with respect to them. 

In this course we deal with only ODEs. 

Order:   The order of the differential equation is the highest order of the derivatives that 

occurs in the equation. 

Degree:    The degree of the highest order derivative present in the equation, after the DE 

has been made free from the radicals and fractions as far as the derivative are concerned. 

 
Linearity:    A DE in which the dependent variables and all its derivatives present occur in 

the first degree only and no products of dependent variables and / or derivatives occur.  

 

A DE which is not linear is called a non-linear differential equation. 
 

Homogeneous: Each term of the equation contains the dependent variable. 
 
A DE which is not homogeneous is called a non-homogeneous (or inhomogeneous) DE. 
 

Example1   Classify the DEs given in section 1.1 as per type, order, degree and linearity. 

Also determine whether the equation is homogeneous or not. 

 

Exercise (in class) 

Classify each of the following DEs as per type, order, degree and linearity. Also determine 

whether the equation is homogeneous or not. 

1.     2 
𝑑𝑦

𝑑𝑥
+

𝑑3𝑦

𝑑𝑥3
= 5 (

𝑑𝑦

𝑑𝑥
)

2

.                                     2.   
𝑑2𝑦

𝑑𝑥2
+ 𝑒𝑥 = tan 𝑦. 

3.    
𝑑3𝑦

𝑑𝑥3
= (1 + (

𝑑2𝑦

𝑑𝑥2
)

2

)

5/2

.                                 4.    
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
= 0. 

5.     (
𝑑𝑟

𝑑𝑠
)

3

= (
𝑑4𝑟

𝑑𝑠4
+ 1)

2

.                                       6.   √
𝑑2𝜌

𝑑𝜃2
+ 𝜌 = sin 𝜌. 

7.    
𝑑𝑦

𝑑𝑥
= (

1 + 𝑥

1 + 𝑦
)

1/3

.                                                8.     sin 𝑥
𝑑2𝑦

𝑑𝑥2
− (1 − 𝑦2)

𝑑𝑦

𝑑𝑥
+ 5𝑦 = 0. 

 

1.3       Solution of a Differential Equation 

 
Solution:   A relation which does not contain any derivatives such that this relation and the 

derivatives obtained from it is defined and satisfies the given DE in some interval I. 
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Example 2 Show that  𝑦(𝑥) = 𝛼 cos(𝑛𝑥 + 𝛽)  is a solution of the differential equation  

𝑑2𝑦

𝑑𝑥2
+ 𝑛2𝑦 = 0, 

where  𝛼, 𝛽  are arbitrary constants. 

 
Example 3 Determine all values of   𝑟  so that the differential equation 

2
𝑑3𝑦

𝑑𝑥3
+

𝑑2𝑦

𝑑𝑥2
− 5

𝑑𝑦

𝑑𝑥
+ 2𝑦 = 0 

has a solution of the form  𝑦 = 𝑒𝑟𝑥. 

 

Example 4 Show that   𝑥3 + 3𝑥𝑦2 = 1  gives a solution of the differential equation 

2𝑥𝑦
𝑑𝑦

𝑑𝑥
+ 𝑥2 + 𝑦2 = 0 

on the interval  0 < 𝑥 < 1.  
 

General Solution (complete primitive):   A solution which contains a number of 

independent arbitrary constants equal to the order of the DE is called the general solution 

or complete primitive. 
 

The family of solutions in this case is known as  𝑛 − parametric family. 
  

The curves represented by this 𝑛 − parametric family is called the integral curve. 

 

Particular Solution:   A solution obtained from a general solution by giving particular 

values to one or more of the arbitrary constants is called the particular solution. 
 

Example 5   Verify that 𝑦 = (𝑥2 + 𝑐)2 + 1 is a general solution of the differential equation 

𝑦′ = 4𝑥√𝑦 − 1. 

 

Example 6   Verify that 𝑦 = 𝑒𝑥2
∫ 𝑒−𝑡2

𝑑𝑡
𝑥

0
+ 𝑒𝑥2

 is a particular solution of the differential 

equation 
𝑑𝑦

𝑑𝑥
− 2𝑥𝑦 − 1 = 0. 

 

1.4 Formation of Differential Equations 

 
Suppose we are given a primitive involving 𝑛  independent arbitrary constants. 

Differentiating it successively 𝑛 times and then eliminating 𝑛 arbitrary constants from the 

above (𝑛 + 1) equations, we get a DE of order 𝑛. 

Example 7 Find the differential equation for which 𝑟 = 𝑐(1 + cos 𝜃) is a solution. 

 

Example 8 Find the differential equation for which 𝑦(𝑥) = 𝑐1𝑒−2𝑥 + 𝑐2𝑒3𝑥  where 𝑐1, 𝑐2  
are arbitrary constants, is a complete primitive. 
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1.5 Initial Value Problems (IVP) 

 
Initial Conditions: Initial condition(s) is a (are set of) condition(s) on the solution at one 

point on the solution space that will allow us to determine which solution that we are after. 

The number of initial conditions that are required for a given DE is the same as the order of 

the differential equation. 

 

Initial Value Problem: An initial value problem (IVP) is a differential equation along with 

an appropriate number of initial conditions. 

 

Example 9   Show that  𝑦(𝑥) = 𝑐1𝑥−3/2 + 𝑐2𝑥−1/2   is a solution to   

4𝑥2𝑦′′ + 12𝑥𝑦′ + 3𝑦 = 0 

for 𝑥 > 0. Find the particular solution which satisfies the initial conditions  𝑦(1) = 0, 𝑦′(1) =

−1. 

 

CHAPTER  2  FIRST ORDER DIFFERENTIAL EQUATIONS 

 
2.1 Separable Equations 

 
If the given differential equation can be rewritten in the form  𝐹(𝑥)𝑑𝑥 + 𝐺(𝑦)𝑑𝑦 = 0, we say 

that variables are separable and the solution is obtained by 

∫ 𝐹(𝑥)𝑑𝑥 + ∫ 𝐺(𝑦)𝑑𝑦 = 𝐶, 

where 𝐶 is an arbitrary constant. 

 

Example 2.1 Solve each of the following equations: 

(𝑖)        𝑥2(1 + 𝑦)
𝑑𝑦

𝑑𝑥
+ (1 + 𝑥2)𝑦 = 0.                     (𝑖𝑖)    𝑦 − 𝑥

𝑑𝑦

𝑑𝑥
= 𝑎 (𝑦2 +

𝑑𝑦

𝑑𝑥
). 

(𝑖𝑖𝑖)    𝑥 𝑑𝑥 + (𝑥2 + 1) cot 𝑦  𝑑𝑦 = 0.                        (𝑖𝑣)   tan 𝑦
𝑑𝑦

𝑑𝑥
= sin(𝑥 + 𝑦) + sin(𝑥 − 𝑦). 

 

Example 2.2 Find the integral curve which satisfies the differential equation 

(𝑦2 + 1)𝑑𝑥 + (𝑥2 + 1)𝑑𝑦 = 0 

and passes through the origin. 

 
Equations Reducible to Separable Form 

 
1.  Homogeneous Equations:   General form 

𝑑𝑦

𝑑𝑥
= 𝑓 (

𝑦

𝑥
). 

Substitution:   𝑦 = 𝑣𝑥.  

 
Example 2.3 Solve each of the following equations: 

(𝑖)        (𝑥2 − 3𝑦2)𝑑𝑥 + 2𝑥𝑦 𝑑𝑦 = 0.                     (𝑖𝑖)    (1 + 𝑒
𝑥
𝑦) 𝑑𝑥 + 𝑒

𝑥
𝑦 (1 −

𝑥

𝑦
) 𝑑𝑦 = 0. 
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2. Equations Reducible to Homogeneous Form: Equations of the form 

𝑑𝑦

𝑑𝑥
=

𝑎𝑥 + 𝑏𝑦 + 𝑐

𝑎′𝑥 + 𝑏′𝑦 + 𝑐′
;      𝑎𝑏′ − 𝑏𝑎′ ≠ 0. 

Substitution     𝑥 = 𝑢 + ℎ, 𝑦 = 𝑣 + 𝑘,  

where  𝑢, 𝑣 are new variables and  ℎ, 𝑘  are constants to be chosen. 

 

Example 2.4 Solve  

𝑑𝑦

𝑑𝑥
=

𝑥 + 2𝑦 − 3

2𝑥 + 𝑦 − 3
. 

3.   Equations of the form 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑎𝑥 + 𝑏𝑦). 

Substitution:  𝑎𝑥 + 𝑏𝑦 = 𝑢. 

 
Example 2.5 Solve each of the following equations: 

(𝑖)        
𝑑𝑦

𝑑𝑥
=

𝑥 − 𝑦 + 3

2𝑥 − 2𝑦 + 3
.                     (𝑖𝑖)    

𝑑𝑦

𝑑𝑥
= cos(𝑥 + 𝑦). 

 
2.2 Linear Equations 

 
A first order differential equation is a linear equation if it is, or can be written, in the form 

𝑑𝑦

𝑑𝑥
+ 𝑃(𝑥) 𝑦 = 𝑄(𝑥) 

where 𝑃(𝑥) and 𝑄(𝑥) are continuous functions of  𝑥 alone on some interval I. 

 
Working Rule 

Step 1.   Identify the equation as linear and write it in the general form   
𝑑𝑦

𝑑𝑥
+

𝑃(𝑥) 𝑦 = 𝑄(𝑥). 

Step 2.  Calculate   𝑅(𝑥) = ∫ 𝑃(𝑥)𝑑𝑥   omitting integrating constant and form 𝑒𝑅(𝑥).  

Step 3.  Multiply the equation by 𝑒𝑅(𝑥) and simplify to obtain 

𝑑

𝑑𝑥
(𝑒𝑅(𝑥) 𝑦) = 𝑒𝑅(𝑥)𝑄(𝑥) 

Step 4.  Solve the equation. 

 

Integrating Factor:   The multiplication factor 𝑒𝑅(𝑥)  is called an integrating factor (I.F.) 

 
 
Example 2.6 Solve each of the following equations: 

(𝑖)        𝑦𝑑𝑥 − 𝑥𝑑𝑦 + ln 𝑥 𝑑𝑥 = 0.                             (𝑖𝑖)      sin 𝑥
𝑑𝑦

𝑑𝑥
+ 𝑦 = cos 𝑥.         

(𝑖𝑖𝑖)      𝑦2𝑑𝑥 + (3𝑥𝑦 − 1)𝑑𝑦 − 0. 
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Equations Reducible to Linear Form 

 
1.  An equation of the form     

𝑓′(𝑦) 
𝑑𝑦

𝑑𝑥
+ 𝑃(𝑥)𝑓(𝑦) = 𝑄(𝑥). 

 Substitution 𝑓(𝑦) = 𝑣. 

 

Example 2.7 Solve each of the following equations: 

(𝑖)       
𝑑𝑦

𝑑𝑥
+ 1 = 𝑒𝑥−𝑦.                (𝑖𝑖)      

𝑑𝑦

𝑑𝑥
+ 𝑥 sin 2𝑦 = 𝑥3 cos2 𝑦. 

 
2.   Bernoulli Equations 

 
An equation of the form 

𝑑𝑦

𝑑𝑥
+ 𝑃(𝑥)𝑦 = 𝑄(𝑥)𝑦𝑛, 

where  𝑛 ≠ 0, 1  is a constant, is called a Bernoulli equation. 

 
Note:- 

1. If  𝑛 = 0, the given equation is   a linear equation. 

2. If  𝑛 = 1, the equation is in the separable variable form 

 
Solving Procedure: 

Multiply the given equation by  (1 − 𝑛)𝑦−𝑛 and get 

(1 − 𝑛)𝑦−𝑛
𝑑𝑦

𝑑𝑥
+ (1 − 𝑛)𝑃(𝑥)𝑦1−𝑛 = (1 − 𝑛)𝑄(𝑥). 

Now, substitute  𝑣 = 𝑦1−𝑛. 

Then, the equation reduces to the linear form.  

 
Example 2.8 Solve each of the following equations: 

(𝑖)       
𝑑𝑦

𝑑𝑥
+ 𝑦 = 𝑦3𝑥.                (𝑖𝑖)     cos 𝜃 

𝑑𝑟

𝑑𝜃
− 𝑟 sin 𝜃 = −𝑟2. 

 
 
2.3 Exact Equations 

The differential  𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 is said to be exact if there exist a function  𝑓(𝑥, 𝑦) 

such that  

𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 𝑑𝑓(𝑥, 𝑦). 

In this case, the differential equation 

𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0 

is called an exact differential equation. 
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Note:-  𝑦2𝑑𝑥 + 2𝑥𝑦𝑑𝑦 = 0 is an exact differential equation, for  𝑦2𝑑𝑥 + 2𝑥𝑦𝑑𝑦 = 𝑑(𝑦2𝑥) is 

exact. But, y𝑑𝑥 + 2𝑥𝑑𝑦 = 0 is not exact. 

 
Theorem 2.1  

The differential equation  𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0  is exact if and only if 

𝜕𝑀

𝜕𝑦
=

𝜕𝑁

𝜕𝑥
. 

Proof. Omitted. 

 
Solving exact differential equations 

 
1. Solutions by inspection 

 
Remember the following exact differentials for direct applications: 

1.   𝑑(𝑥𝑦) = 𝑥𝑑𝑦 + 𝑦𝑑𝑥                                     2.   𝑑 (
𝑦

𝑥
) =

𝑥𝑑𝑦 − 𝑦𝑑𝑥

𝑥2
 

 

3.   𝑑 (tan−1 (
𝑦

𝑥
)) =

𝑥𝑑𝑦 − 𝑦𝑑𝑥

𝑥2 + 𝑦2
                     4.   𝑑 (log (

𝑦

𝑥
)) =

𝑥𝑑𝑦 − 𝑦𝑑𝑥

𝑥𝑦
 

 

5.   𝑑 (
𝑒𝑥

𝑦
) =

𝑒𝑥(𝑦𝑑𝑥 − 𝑑𝑦)

𝑦2
                             6.   𝑑 (−

1

𝑥𝑦
) =

𝑥𝑑𝑦 + 𝑦𝑑𝑥

𝑥2𝑦2
 

 

7.   𝑑(log(𝑥2 + 𝑦2)) =
2𝑥𝑑𝑦 + 2𝑦𝑑𝑥

𝑥2 + 𝑦2
 

 
Example 2.9       Solve each of the following exact equations by inspection: 

(𝑖)       (𝑥𝑒𝑥𝑦 + 2𝑦)𝑑𝑦 + 𝑦𝑒𝑥𝑦𝑑𝑥 = 0.                (𝑖𝑖)     2(𝑢2 + 𝑢𝑣)𝑑𝑢 + (𝑢2 + 𝑣2)𝑑𝑣 = 0. 

(𝑖𝑖𝑖)    (𝑦 + cos 𝑦 +
1

2√𝑥
) 𝑑𝑥 + (𝑥 − 𝑥 sin 𝑦 − 1)𝑑𝑦 = 0. 

 
2. General Working Rule 

Step 1.    Verify the condition  
𝜕𝑀

𝜕𝑦
=

𝜕𝑁

𝜕𝑥
. 

Step 2.    Integrate 𝑀 with respect to 𝑥, treating 𝑦 as a constant. 

Step 3.    Integrate  𝑁  with respect to  𝑦  and exclude the terms which obtained from step 2. 

Step 4.   Add the two expressions obtained in step 2 and step 3 by considering the common 

terms, if any, only once and equate the result to an  arbitrary constant, which is the 

required solution. 

Example 2.10     Solve the equation 

𝑑𝑦

𝑑𝑥
+

𝑎𝑥 + ℎ𝑦 + 𝑔

ℎ𝑥 + 𝑏𝑦 + 𝑓
= 0 

 
Example 2.11    Verify for exactness and solve  𝑦 sin 2𝑥  𝑑𝑥 − (𝑦2 + cos2 𝑥)𝑑𝑦 = 0. 
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Equations reducible to Exact Form 

Now we consider some differential equations of the form 𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0 that are not exact 

but can be made exact by multiplying the equation by a function called  integrating factor. 

 
Example 2.12   Show that 

(𝑥3𝑒𝑥 − 𝑚𝑦2)𝑑𝑥 + 𝑚𝑥𝑦 𝑑𝑦 = 0 

is not exact. Show also that  𝑥−3  is an integrating factor an hence solve the equation. 

 

Example 2.13   Solve the equation 

(𝑥3 + 𝑥𝑦2 + 𝑎2𝑦)𝑑𝑥 + (𝑦3 + 𝑦𝑥2 − 𝑎2𝑥)𝑑𝑦 = 0. 

 

Applications 

 

Example 2.14.  A certain radioactive material is decaying at a rate proportional to the 

amount present. If a sample of 50 grams of the material was present initially and after 2 

hours the sample lost 10% of its mass, find: 

(a) An expression for the mass of the material remaining at any time t. 

(b) The mass of the material after 4 hours. 

(c) The half-life of the material. 

 

Example 2.15  The body of a murder victim was discovered at 11.00 p.m. The doctor 

took the temperature of the body at 11.30 p.m., which was  94.6°𝐹. He again took the 

temperature after one hour when it showed  93.4°𝐹, and noticed that the room 

temperature of the room was  70°𝐹. Assuming normal temperature of human body is  

98.6°𝐹, estimate the time of death. 

 

3. EXISTENCE AND UNIQUENESS THEOREM 

3.1.1 Picard’s iteration 
 
Theorem 3.1 Consider the IVP 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦), 𝑦(𝑥0) = 𝑦0 (1) 

Define a rectangle  𝑅 = {(𝑥, 𝑦): |𝑥 − 𝑥0| ≤ 𝑎, |𝑦 − 𝑦0} ≤ 𝑏}  such that 𝑓  is continuous in  𝑅. 

Then, 𝑦 = 𝑦(𝑥)  is a solution of the IVP if and only if  𝑦(𝑥)  is a continuous solution of the 

integral equation 

𝑦 = 𝑦0 + ∫ 𝑓(𝑠, 𝑦(𝑠))
𝑥

𝑥0

𝑑𝑠 (2) 

 
  
Now, we shall list the procedure to find an approximation solution for the IVP. The method 
is due to Picard and therefore known as Picard’s method of successive approximations. 

Step 1.   Select the initial guess as  𝑦0(𝑥) = 𝑦0. 
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Step 2. Find at least three approximations 𝑦1(𝑥), 𝑦2(𝑥), 𝑦3(𝑥) from the iteration equation 

𝑦𝑛(𝑥) = 𝑦0 + ∫ 𝑓(𝑠, 𝑦𝑛−1(𝑠))
𝑥

𝑥0

𝑑𝑠, 𝑛 = 1, 2, 3, ⋯. 

Step 3. Guess the expression, if possible, for the  𝑛th  approximation 𝑦𝑛(𝑥). 
 

Step 4. Taking the limit of  𝑦𝑛(𝑥)  as  𝑛 → ∞, if the limit exist, we can find the exact solution 
of the IVP. 

 
 
Example 3.1 Compute the first three Picard’s iterates for the IVP 

𝑑𝑦

𝑑𝑠
= 𝑥2 + 𝑦2, 𝑦(0) = 0. 

 
 
Example 3.2 Consider the initial value problem 

𝑑𝑦

𝑑𝑥
= 2𝑥(𝑦 + 1),     𝑦(0) = 0. 

(𝑎)    Find the first three Picard’s approximations of the problem. 

(𝑏) Show that they converge to  𝑦(𝑥) = 𝑒𝑥2
− 1. 

(𝑐) Use the above results to find a three decimal approximation for   𝑒0.01 . 
 
The method has a simple expansion for the system of first order IVPs. We shall explain the 
expansion method using an example. 
 
Example 3.3   Construct Picard iterates for the system of IVPs 

𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑧,

𝑑𝑧

𝑑𝑥
= 𝑧 − 𝑦 

where  𝑦 = 0  and  𝑧 = 1  when  𝑥 = 0. 
 
3.2 Picard’s Existence and Uniqueness Theorem 

 
Theorem 3.2 Consider the IVP 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦), 𝑦(𝑥0) = 𝑦0  

Define  𝑅 = {(𝑥, 𝑦): |𝑥 − 𝑥0| ≤ 𝑎, |𝑦 − 𝑦0} ≤ 𝑏}  such that  𝑓  and  
𝜕𝑓

𝜕𝑦
  are continuous in  𝑅. 

Let  𝑀 = max
(𝑥,𝑦)∈𝑅

|𝑓(𝑥, 𝑦)|  and let ℎ = min (𝑎,
𝑏

𝑀
). Then, the IVP  has a unique solution 𝑦 =

𝑦(𝑥)  in the interval |𝑥 − 𝑥0| ≤ ℎ  and on the interval, 𝑦(𝑥) is such that |𝑦(𝑥)| ≤ 𝑏. 

Remark: (i)   If at least the condition ‘𝑓  is continuous’  is satisfied, then existence of the 

solution guaranteed in an interval possibly smaller than |𝑥 − 𝑥0| < 𝑎 (See theorem 1). 

(ii) The condition  ‘
𝜕𝑓

𝜕𝑦
  is continuous’  can be replaced by a weaker condition, known as 

Lipschits condition, for the uniqueness part. We omit this type of problems for this course. 
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Example 3.4 For the IVP 

𝑑𝑦

𝑑𝑥
= (𝑦 + 1) cos(𝑥2𝑦) , 𝑦(2) = −1 

discuss the existence and uniqueness of a solution. 

 

 

Example 3.5 For the IVP 

𝑑𝑦

𝑑𝑥
=

2𝑥 + 1

𝑦 − 1
, 𝑦(0) = −1 

discuss the existence and uniqueness of a solution. 

 

 

Example 3.6 For the IVP 

𝑑𝑦

𝑑𝑥
= 𝑥2 + 𝑦2, 𝑦(0) = 0 

find the largest interval on which Picard’s theorem guarantees the existence of a unique 

solution. 

 

Remark: (i)  The actual interval on which the solution exist may be larger than Picard’s 

theorem guarantees. 

(ii) The conditions stated in Picard’s theorem are sufficient but not necessary. If the 

conditions do not hold, then the IVP may have either 

(a) no solution, 

(b) more than one solution, or 

(c) a unique solution. 

 

Example 3.7 Verify that  𝑦1(𝑥) = 0  and  𝑦2(𝑥) = (2𝑥)3/2  are two solutions of the IVP 

𝑑𝑦

𝑑𝑥
= 3𝑦1/3, 𝑦(0) = 0. 

“The existence of two solutions contradicts the uniqueness part of the Picard’s theorem.”   

Do you agree with this statement? Give reasons. 

Example 3.8 Show that the IVP  

𝑑𝑦

𝑑𝑥
= 𝑒−𝑥2

+ 𝑦4, 𝑦(0) = 0 

has a unique solution on the interval  [0,
1

2
]. 

( You may assume that  𝑒−𝑡2
≤ 1   for each  𝑡 ∈ ℝ ). 


