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1. Binary Operation and Group Axioms 
 

1.1 Binary operation 
 

Definition 1.1 Let  𝐺  be a non-empty set. Any mapping (or rule) ∗∶ 𝐺 × 𝐺 → 𝐺  is 

called a binary operation (or binary composition)  on 𝐺 which we will usually denote by  ∗

(𝑎, 𝑏) = 𝑎 ∗ 𝑏. If  ∗  is a binary operation on  𝐺, we say that  𝐺  is closed under  ∗. 
 

Remark:   If   ∗  is a binary operation on  𝐺, then 

(i) the operation  ∗  is well-defined: for any  𝑎, 𝑏 ∈ 𝐺, there is exactly one  𝑐 ∈ 𝐺  

such that  𝑎 ∗ 𝑏 = 𝑐. 

(ii) 𝐺  is closed under  ∗:  for all  𝑎, 𝑏 ∈ 𝐺, 𝑎 ∗ 𝑏 = 𝑐 ∈ 𝐺. 
 

Examples 1.1  Tick  (√)  if  ∗  is a binary operation on the given set or give a counter example: 
  

Set Operation Binary 

 ℤ Addition  

 Subtraction  

 Multiplication  

 Division  

Set of all  𝑚 × 𝑛  matrices with real 

entries:   𝑀𝑚×𝑛(ℝ) 

Matrix Addition  

Set of all  square matrices of order 𝑛 Matrix Multiplication  

set of all polynomials of degree less 

than or equal to  𝑛 :  𝑃𝑛(𝑥) 

Polynomial Addition  

 Polynomial Multiplication  

ℝ division  

ℕ subtraction  
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1.2 Groups 

Definition 1.2 A non-empty set  𝐺  together with a binary operation  ∗∶ 𝐺 × 𝐺 → 𝐺  is 

called a group if the following axioms hold: 

G1: Associative property. 

  That is, for every  𝑎, 𝑏, 𝑐 ∈ 𝐺,  

(𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐). 

G2: Existence of identity 

  That is, for all  𝑎 ∈ 𝐺, there exist an element  𝑒 ∈ 𝐺  such that   

𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎 

G3: Existence of inverse 

  That is, for each  𝑎 ∈ 𝐺, there exist an element  𝑏 ∈ 𝐺  such that   

𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 = 𝑒. 

A group is said to be abelian if the axiom 

G4: Commutativity 

  That is,  for all  𝑎, 𝑏 ∈ 𝐺 

𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 

  holds in addition to group axioms  G1, G2  and  G3. 

 

Remarks: 

(i) We’ll often write  (𝐺,∗)  to distinguish the operation on G. If the operation is 

understood, we’ll just write 𝐺 for the group. 
 

(ii)  One should verify that  𝐺  is non-empty and  ∗  is a binary operation before check the 

axioms G1, G2, G3 and G4. 
 

(iii) Identity element  𝑒  depends only on both the set  𝐺  and the binary operation  ∗. 
 

(iv) Inverse element  𝑏  of an element  𝑎 ∈ 𝐺  depends on  𝑎, 𝐺  and  ∗. 
 

(v)  To check  G2  and  G3, it is enough to check both identity element and inverse only in 

one direction: that is check 

𝑒 ∗ 𝑎 = 𝑎     and     𝑏 ∗ 𝑎 = 𝑒 

[In this case, we say that  𝑒  is the left identity of  𝐺  and  𝑏  is the left inverse of  𝑎  in  

𝐺]  or check 

𝑎 ∗ 𝑒 = 𝑎     and     𝑎 ∗ 𝑏 = 𝑒 

[In this case,  𝑒  is the right identity of  𝐺  and  𝑏  is the right inverse of  𝑎  in  𝐺]. 

 

Example 1.2  Well-known abelian Groups 

(i) (ℤ,+)  is an abelian group. Identity element is  0(∈ ℤ)  and the inverse of  𝑛 ∈ ℤ  is  −𝑛. 
 

(ii)  (𝑀𝑛(ℝ), +) is an abelian group.  

If  𝐴 = (𝑎𝑖𝑗) ∈ 𝑀𝑛(ℝ), then the zero matrix is the identity element and  −𝐴 = (−𝑎𝑖𝑗)  is 

the additive inverse. 
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(iii) (℘𝑛(𝑥),+)  is an abelian group. zero polynomial is additive identity and for any 𝑝(𝑥) =

𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯+ 𝑎𝑛𝑥

𝑛 ∈ ℘𝑛(𝑥), −𝑝(𝑥) = −𝑎0 − 𝑎1𝑥 − 𝑎2𝑥
2 −⋯− 𝑎𝑛𝑥

𝑛 ∈ ℘𝑛(𝑥)  

is the additive inverse. 

 

Example 1.3  Non-Groups 

(i)   (ℤ, ×)  is not a group. Multiplication on  ℤ  is associative,  1  is the identity element 

(1 × 𝑛 = 𝑛 × 1 = 𝑛  for any  𝑛 ∈ ℤ)  but for any  𝑛\{1} ∈ ℤ , inverse element does not 

exist. That is, 𝑛 ×
1

𝑛
= 1  however 

1

𝑛
∉ ℤ  if  𝑛 ≠ 1. 

 

(ii)   𝑀𝑛(ℝ),×)  is not a group because a matrix with zero determinant has no inverse. 

However, set of all invertible matrices of same size is a group but not abelian as matrix 

multiplication is not commutative. 
 

(iii) ℚ = set of all rational numbers = {
𝑝

𝑞
|𝑝, 𝑞 ∈ ℤ , 𝑞 ≠ 0} , ℝ = 𝑠et of all real numbers, 

ℂ = set of all complex numbers = {𝑎 + 𝑖𝑏|𝑎, 𝑏 ∈ ℝ, and  𝑖2 = −1} are additive abelian 

groups but not multiplicative groups. 
 

(iv) ℚ\{0}, ℝ\{0}, ℂ\{0} are multiplicative abelian groups.  1  is the identity element and 
1

𝑎
  is the inverse of  𝑎. 

 

Remark: Let  𝐺  be a nonempty set and  𝐻  be a nonempty subset of  𝐺. Let  ∗  be an   

operation defined on both  𝐺  and  𝐻. 

(i) If  ∗  is a binary operation on one set (𝐺  or  𝐻 ), then it need not to be binary on the 

other. 
 

(ii) If  ∗  is associative on the super set  𝐺, it is associative on the subset  𝐻, but the converse 

need not to be true. 
 

(iii) If  𝑒  is the identity element of  𝐺  and if  𝑒 ∈ 𝐻, then  𝑒  is the identity element of  𝐻. 
 

(iv) If  𝑎−1  is the inverse of  𝑎 ∈ 𝐺  and  𝑎, 𝑎−1 ∈ 𝐻, then   𝑎−1  is the inverse of  𝑎 ∈ 𝐻. 

 

Example 1.4 A binary operation on  ℤ  is defined as  𝑎 ∗ 𝑏 = 𝑎 + 𝑏 + 1  for all  𝑎, 𝑏 ∈ ℤ. 

Show that  (ℤ,∗)  is an group. 
 

Example 1.5 Let  𝐺 = {(𝑎, 𝑏) | 𝑎, 𝑏 ∈ ℝ   with   𝑎 ≠ 0}. Define an operator  ∗  on  𝐺  by 

(𝑎, 𝑏) ∗ (𝑐, 𝑑) = (𝑎𝑐, 𝑏𝑐 + 𝑑). 

Show that  (𝐺,∗)  is a group. Is it Abelian? Justify your answer. 

 

1.3  Group Tables 

An easy way to handle a (small) finite group is preparing group table (or Cayley table). Let us 

explain it using the following example. 

 

Example 1.6 Construct the Cayley table for the set of all solutions  𝐴  of the equation  

𝑥4 = 1  under (complex) multiplication and show that this forms a group. 
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Notation:    

• If there is no confusion between the binary operations  ∗  and the usual multiplication  

×, we usually write  𝑎𝑏 instead of  𝑎 ∗ 𝑏. Further, 

𝑎𝑛 = 𝑎 ∗ 𝑎 ∗ ⋯∗ 𝑎⏟           
𝑛 times

  and     𝑎−𝑛 = (𝑎−1)𝑛 = 𝑎−1 ∗ 𝑎−1 ∗ ⋯∗ 𝑎−1⏟               
𝑛 times

. 

 

• However, in additive type groups we use  𝑛𝑎  for  𝑎 ∗ 𝑎 ∗ ⋯∗ 𝑎 (𝑛 times). That is, 

𝑛𝑎 = 𝑎 ∗ 𝑎 ∗ ⋯∗ 𝑎⏟        
𝑛 times

     and    − 𝑛𝑎 = 𝑛(−𝑎) = (−𝑎) ∗ (−𝑎) ∗ ⋯ ∗ (−𝑎)⏟                
𝑛 times

. 

• We may write  1  for the identity element of multiplicative type groups and  0  for the 

additive type groups, if there is no confusion with real numbers 1 and 0. 

For example, 0 element of the group   (𝑀2(ℝ), +)  is  (
0 0
0 0

). 

 

1.4  Order of a Group and element 

Definition 1.3 The order of a group  𝐺, denoted by  |𝐺|, is the number of elements in  𝐺. 

If a group  𝐺  has infinitely many elements, we will write  |𝐺| = ∞.   

A group 𝐺  is said to be finite if  |𝐺| < ∞. 
 

(ℤ,+), (𝑀𝑛(ℝ), +), (ℚ\{0},×), ( ℝ\{0},×), (ℂ\{0},×) are examples for infinite group. 

Order of the group   𝐺  in example 1.6 is  4  and hence it is a finite group. 

 

Definition 1.4  Order of an element of a group 

Let  𝑎  be an arbitrary element of a group  𝐺.  The least positive integer  𝑚  ,if it exists, such 

that  𝑎𝑚 = 𝑒   (or  𝑚𝑎 = 𝑒), where  𝑒  is the identity element of  𝐺, is called the order of the 

element  𝑎  and is denoted by  ∘ (𝑎) = 𝑚  or  |𝑎| = 𝑚. If there is no such  𝑚 for an element  

𝑎 ∈ 𝐺, we say that  𝑎  has infinite order and denote  ∘ (𝑎) = ∞  or  |𝑎| = ∞. 

 

Theorem 1.1 Every element of a finite group has finite order. 

 

Example 1.7 Find the order of the group  𝐺  and the order of each of the element  1, 𝑖   given 

in example 1.6. 
 

Observations: 

✓ Order of the identity element is  1. 

✓ Order of an element is equal to order of its inverse. 

✓ Order of an element divides order of the group. 

 

EXERCISES 1 
 

1. Determine whether each of the following operation  ∗  is a binary operation on the 

corresponding sets. If  ∗  is a binary operation, determine whether  ∗  is associative and 

whether  ∗  is commutative. Also, decide whether the given set is a group under the 

respective operation 

(i) On  ℕ,  define  ∗  by  𝑎 ∗ 𝑏 = 𝑎𝑏. 
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(ii) On  ℝ\{1},  define  ∗  by  𝑎 ∗ 𝑏 = 2(𝑎 + 𝑏) − 𝑎𝑏. 

(iii) On  ℕ,  define  ∗  by  𝑎 ∗ 𝑏 = the largest integer less than  𝑎𝑏. 

(iv) On  ℚ,  define  ∗  by  𝑎 ∗ 𝑏 = 2𝑎 + 𝑏 + 1. 

(v) On  ℕ,  define  ∗  by  𝑎 ∗ 𝑏 = |𝑎𝑏| − 𝑎. 

(vi) On  ℚ,  define  ∗  by  𝑎 ∗ 𝑏 = 𝑎𝑏/2 . 

(vii) On  ℕ,  define  ∗  by  𝑎 ∗ 𝑏 = (𝑎𝑏)2. 

(viii) On  ℚ,  define  ∗  by  
𝑎

𝑏
∗
𝑐

𝑑
=
𝑎+𝑐

𝑏𝑑
. 

(ix) On  ℤ,  define  ∗  by  𝑎 ∗ 𝑏 = 1. 

(x) On  ℤ,  define  ∗  by  𝑎 ∗ 𝑏 = 1 − 2𝑎𝑏. 
 

2. Show that set of all  2 × 2  matrices of the form  𝐺 = {(
𝑎 𝑏
0 𝑑

) |𝑎, 𝑏, 𝑑 ∈ ℝ, 𝑎𝑑 ≠ 0}  is a 

group under ordinary matrix multiplication. Is this group abelian? Justify your answer. 
 

3. A binary operation on  ℘2(𝑥) = {𝑎 + 𝑏𝑥 + 𝑐𝑥
2 | 𝑎, 𝑏, 𝑐 ∈ ℝ}  is defined as  𝑝1(𝑥) ∗

𝑝2(𝑥) = 2𝑝1(𝑥) − 𝑝2(𝑥)  for all  𝑝1(𝑥), 𝑝2(𝑥) ∈ ℘2(𝑥). Determined whether (℘2(𝑥),∗)  is 

a group. 
 

4. A binary operation on  ℝ\{−
1

2
} is defined as  𝑎 ∗ 𝑏 = 𝑎 + 𝑏 + 2𝑎𝑏  for all  𝑎, 𝑏 ∈ ℝ\{−

1

2
}.   

Show that  (ℝ\{−
1

2
}   ,∗)  is a group. Is this group abelian? Justify your answer. 

 

5. Let  𝐺 = {(𝑥, 𝑦) ∈ ℝ2|𝑦 ≠ 0}. Define an operation  ∗  on  𝐺  such that 

(𝑎, 𝑏) ∗ (𝑥, 𝑦) = (𝑎 + 𝑥, 𝑏𝑦). 

 Show that (𝐺,∗)  is an abelian group. 
 

6. Let the operation  ∗  be defined on a set  𝐴 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}  by means of the following 

composition table. 

 

 

 

 

 

 
 

(i) Is  ∗  a binary operation on  𝐴?  Give a reason. 

(ii) Compute  [(𝑏 ∗ 𝑐) ∗ (𝑑 ∗ 𝑎)] ∗ 𝑒 

(iii) Is  ∗  associative on  𝐴?  Give a reason. 

(iv) Prove or disprove:  ∗  commutative on  𝐴. 
 

7. Let  𝐺  consists of all roots (real or complex) of the equation  𝑥3 = 1. Construct the 

composition table for  𝐺  under multiplication and show that  𝐺  is an abelian group. 

What is the order of  𝐺? Find the orders of the roots other that  𝑥 = 1. 

 

2.  Basic Theorems of Groups 
 

Theorem 2.1 Uniqueness of identity 

The identity element of a group is unique. 

∗ 𝑎 𝑏 𝑐 𝑑 𝑒 

𝑎 𝑎 𝑏 𝑐 𝑏 𝑑 

𝑏 𝑏 𝑐 𝑎 𝑒 𝑐 

𝑐 𝑐 𝑎 𝑏 𝑏 𝑎 

𝑑 𝑏 𝑒 𝑏 𝑒 𝑑 

𝑒 𝑑 𝑏 𝑎 𝑑 𝑐 
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Theorem 2.2 Cancellation laws 

Let  𝑎, 𝑏, 𝑐  be arbitrary elements of a group  𝐺. Then, 

Left cancellation law: 𝑎 ∗ 𝑏 = 𝑎 ∗ 𝑐 ⟹ 𝑏 = 𝑐. 

Right cancellation law: 𝑏 ∗ 𝑎 = 𝑐 ∗ 𝑎 ⟹ 𝑏 = 𝑐. 
 

Theorem 2.3 Uniqueness of inverse 

The inverse of each element of a group is unique. 
 

Theorem 2.4  Let  𝐺  be a group. Then, for any  𝑎, 𝑏 ∈ 𝐺 

(i) (𝑎𝑏)−1 = 𝑏−1𝑎−1 

(ii) (𝑎−1)−1 = 𝑎. 

 

EXERCISES 2  

1. Let  𝐺  is a set and  ∗  is a binary operation on  𝐺  such that the following conditions are 

satisfied: 

 (i) 𝑎 ∗ (𝑏 ∗ 𝑐) = (𝑎 ∗ 𝑏) ∗ 𝑐  for all  𝑎, 𝑏, 𝑐 ∈ 𝐺. 

 (ii) There exists an element  𝑒  in  𝐺  such that  𝑒 ∗ 𝑒 = 𝑒. 

 (iii) For each  𝑎 ∈ 𝐺, there exists  𝑏  in  𝐺  such that  𝑏 ∗ 𝑎 = 𝑒. 

(iv) For  𝑎, 𝑏, 𝑐 ∈ 𝐺, if  𝑎 ∗ 𝑏 = 𝑒  and  𝑎 ∗ 𝑐 = 𝑒, then  𝑏 = 𝑐. 

 Show that  𝐺  is a group.  

 (Hint: Show that  𝑒  is the left identity). 

 

2. If  𝐺  is a group and  𝑎, 𝑏 ∈ 𝐺, then show that the equation  𝑎𝑥 = 𝑏  has a unique 

solution. 

 

3. Suppose that  (𝐺,∗)  is a group and  𝑎 ∈ 𝐺. If  𝑎 ∗ 𝑎 = 𝑒, then show that  𝑎 = 𝑒, where  e  

is the identity element of  𝐺. 

 

3.  Subgroups 
 

Definition 3.1 Subgroups 

Let  (𝐺,∗)  be a group and let  𝐻  be a non-empty subset of  𝐺. Then,  𝐻  is said to be a 

subgroup of  𝐺  if  𝐻  is also a group under the same binary operation  ∗. If  𝐻  is a subgroup 

of  𝐺, we denote  it by  𝐻 ≤ 𝐺. 

 
Definition 3.2 Trivial and proper subgroups 

The sets  {𝑒}  and  𝐺  itself are subgroups of  any group 𝐺. They are called the trivial 

subgroups of 𝐺. The subgroups which are not trivial, if any, are known as proper 

subgroups. 

 
Theorem 3.1 Let  𝐻  be a non-empty subset of a group  𝐺. Then, 

i. 𝐻 ≤ 𝐺  if and only if  𝑎𝑏−1 ∈ 𝐻  for all  𝑎, 𝑏 ∈ 𝐻. 

ii. In particular, if  𝐻  is finite, then  𝐻 ≤ 𝐺  if and only if  𝑎𝑏 ∈ 𝐻  for all  𝑎, 𝑏 ∈ 𝐻. 
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Theorem 3.2 Let  𝐺  be a finite group and  𝐻  be any subgroup of  𝐺. Then  |𝐻|  divides  |𝐺|. 

 
Theorem 3.3 Every subgroup of an abelian subgroup is always abelian. Subgroup of a non-

abelian group may or may not be abelian. 

 

Example 3.1 Let  𝐺 = {(𝑎, 𝑏)|𝑎, 𝑏 ∈ ℝ   with  𝑎 ≠ 0}. Let the peration  ∗  be defined on  G  

such that 

(𝑎, 𝑏) ∗ (𝑐, 𝑑) = (𝑎𝑐, 𝑏𝑐 + 𝑑). 

Show that  G  is a non-abelian group. Define  𝐻1 = {(𝑎, 𝑏)|𝑎, 𝑏 ∈ ℚ   with  𝑎 ≠ 0}  and  𝐻2 =

{(𝑎, 0) | 𝑎 ∈ ℝ\{0}}. Show that  𝐻1  is a non-abelian subgroup whereas  𝐻2  is abelian 

subgroup. 

 
EXERCISES 3 
 
1. Let   𝐺 = {(𝑎, 𝑏) | 𝑎 ∈ ℤ, 𝑏 ∈ ℚ}. An operator on  G  is defined by 

(𝑎, 𝑏) ∗ (𝑐, 𝑑) = (𝑎 + 𝑐, 2𝑐𝑏 + 𝑑). 

 Show that  ∗  is a binary operation and that  (𝐺,∗)  is a group. Is  𝐺  abelian? 

 Show that  𝐻 = {(𝑎, 0)|𝑎 ∈ ℤ}  is a subgroup of  𝐺. 

 
2. Let  𝑔  be a fixed element of a group  𝐺  and let  𝐶(𝐺) = {𝑥 ∈ 𝐺|𝑥𝑔 = 𝑔𝑥}. Show that  

𝐶(𝐺)  is a subgroup of  𝐺. (This subgroup is called centralizer of  𝑔). 

 
3. Let  𝐺  be a group and let  𝑍(𝐺) = {𝑥 ∈ 𝐺 | 𝑥𝑔 = 𝑔𝑥  for all   𝑔 ∈ 𝐺}. Show that  𝑍(𝐺)  is a 

subgroup of  𝐺. (This subgroup is called the centre of the group  𝐺) 

 
4. Let  𝑔  be a fixed element of a group  𝐺  and let  𝐻 = {𝑥 ∈ 𝐺 | 𝑥 = 𝑔𝑛, 𝑛 ∈ ℕ}. Show that  

𝐻  is a subgroup of  𝐺. 

 Let  𝐺  be the set of all  2 × 2  matrices with unit determinant under usual matrix 

multiplication. Form a subgroup  𝐻  of  𝐺  which contains the element  (
0 1
−1 0

). 

Construct the group table. Is  𝐻  abelian? 
 

5. Show that intersection of two subgroups of a group  𝐺  is a subgroup of  𝐺. 
 
6. Let  𝑛  be any fixed integer. Show that the set  𝐻𝑛 = {𝑛𝑥 | 𝑥 ∈ ℤ} is a subgroup of  (ℤ,+). 

  Is it abelian? Justify your answer. 

 Hence show that the union of two subgroups of a group  𝐺  need not to be a subgroup 

of  𝐺. 

 

4  Cyclic Groups 
 

Definition 4.1 Cyclic Groups 

A group is said to be cyclic if there exists an element  𝑎 ∈ 𝐺  such that any element  𝑏 ∈ 𝐺  

can be obtained by operating  𝑎  by itself several times. That is, 𝐺 is cyclic if  𝑏 = 𝑎𝑛  or  𝑏 =

𝑛𝑎  according as the operation is of multiplicative or additive type. 

In this case, we say that  𝑎  is a generator of  𝐺  and write   𝐺 =< 𝑎 >. 
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Theorem 4.1 For any positive integer  𝑚, let  ℤ𝑚  be the set of all residue classes of 

integers modulo  𝑚. Then,  (ℤ𝑚, +)  is a cyclic group and  ℤ𝑚 =< [1] >. 

 

Recall:  ℤ𝑚 = {[0], [1], [2] ,   ⋯ , [𝑚 − 1]}.  

For example,  ℤ8 = {[0], [1], [2] ,   ⋯ , [7]}.  

Then,  [3] + [6] = [9] = [1]  as when you divide 9 by 8, the reminder is 1. 

[3] × [6] = [18] = [2]  as when you divide 18 by 8, the reminder is 2. 

 

Identity element of  the group is  [0]  as  [𝑎] + [0] = [0] + [𝑎] = [𝑎]. 

Inverse of  [𝑎]  is  [𝑚 − 𝑎]  as  [𝑚 − 𝑎] + [𝑎] = [0]. 

 

Example 4.1 Complete Cayley table for  (ℤ6, +). Is this group abelian? 

 Find  |2|  and  |3|.  

[1]  is a generator. Find another generator for this group.  

Find the subgroups of  (ℤ6, +). 

Complete composition table for  ℤ6  under  ×  and verify that  ℤ6  is not a group under 

multiplication modulo 6. 

 

Theorem 4.2 For any positive integer  𝑚, let    

ℤ𝑚
∗ = {[𝑎] | 1 ≤ 𝑎 ≤ 𝑚  and  gcd(𝑎,𝑚) = 1}. 

Then,  ℤ𝑚
∗   is an abelian group with respect to multiplication modulo  𝑚.  

In particular, if  𝑚  is prime, then it is cyclic. 
 

If  𝑚  is prime, then  ℤ𝑚
∗ = {[1], [2],   ⋯ , [𝑚 − 1]}. 

 

Example 4.2 Complete Cayley table for  (ℤ12
∗ ,×). Is this a group? If so is it abelian and find  

|5|  and  |7|.  
 

Example 4.3 Complete Cayley table for  (ℤ5
∗ ,×). Is this group abelian? 

Find all the generators and subgroups of  (ℤ5
∗ ,×). 

Theorem 4.3  Any cyclic group is abelian. 
 

Theorem 4.4  A subgroup of a cyclic group is cyclic. 
 

Definition 4.2 Euler-phi function 

The Euler-phi function  𝜙(𝑛)  is the number of positive integers  𝑥  (≤ 𝑛)  that have no 

common divisors with  𝑛. 
 

For example,  𝜙(12) = 4  as  1, 5, 7, 11  are relatively prime to  12. 

How many generators are there for a finite cyclic group? 
 

Theorem 4.5  Let  𝐺  be a cyclic group of order  𝑛. Then,  𝐺  has  𝜙(𝑛)  generators. 

Moreover, If  𝑑  divides  𝑛, the number of elements of order  𝑑  in  𝐺  is  𝜙(𝑑). It is 0 

otherwise. 

Example 4.4  Verify the theorem 4.5 for the example  4.3 
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EXERCISES 4 
 
1. Define the terms cyclic group and generator of a cyclic group. 

 Prove each of the following: 

(a) A cyclic group is abelian. 

(b) A subgroup of a cyclic group is cyclic. 

(c) Inverse of a generator of a cyclic group is again a generator. 

 

Note:- Let  𝐺  be a cyclic group of order  𝑛 generated by an element  𝑎 ∈ 𝐺. The element  

𝑎𝑚  (or  𝑚𝑎)  is also a generator if  gcd(𝑚, 𝑛) = 1.  

 

2. How many generators are there of the cyclic group of order (i)  8,   (ii)  10. 

 

3. Show that the group  (ℤ10
× ,×)  is a cyclic group of order 4. 

 Find all generators of this cyclic group. Verify that order of the group is equal to order 

of each generator. 

 Find the subgroup of  ℤ10
×   generated by the element  [9] ∈ ℤ10

× . 
 

4. Show that additive group of residue classes  ℤ8 = {[0], [1], [2],⋯ , [7]}  modulo 8 is a 

cyclic group. 

 Find all generators of this cyclic group.  

 Verify that order of the group is equal to order of each generator. 

 Verify also that inverse of each generator is again a generator. 

 Find the subgroup of  generated by the element  [9] ∈ ℤ10
× . 

 

5. Show that the set  𝑈𝑛  of  𝑛th roots of unity (i.e. the solutions of the equation  𝑥𝑛 = 1) 

forms a cyclic group with respect to multiplication. Find all generators of  𝑈4  and  𝑈5. 

 

6. Show that the abelian group ℤ8
×  under multiplication is not cyclic. 

 

7. Show that  𝐻 = {𝑎𝑘  | 𝑘 ∈ ℤ, 𝑎 ∈ 𝐺}  is a cyclic subgroup of a group  𝐺. 

Let  𝐺  be the group of 2 × 2 invertible matrices under multiplication. Find all 

subgroups of  𝐺  generated by  (
0

1

3

3 0
). 

 

8. Show that the group  𝐺 = {2𝑛 | 𝑛 ∈ ℤ}  under multiplication is cyclic. Give two 

generators. 
 

9. Let  𝐺  be a cyclic group of order 6 and let  𝑎  be a generator. Show that  𝑎5 is also a 

generator of  𝐺  where as  𝑎4  cannot be a generator. Find all subgroups of  𝐺  defined 

whose order is 3. 

 

5. PERMUTATION GROUPS 

 

Definition 5.1 Permutation 

Let  𝐴  be a non-empty subset. Any bijective mapping from  𝐴  to  𝐴  is called a permutation.  
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Notation: The set of all permutations of the set is denoted by  𝑆𝐴. If  𝐴  is finite and has  

𝑛  elements, we shall write  𝑆𝑛  instead of  𝑆𝐴. 

 

Theorem 5.1 There are  𝑛!  Permutations in  𝑆𝑛. i.e.   |𝑆𝑛| = 𝑛!. 

 

Let’s consider the set  𝐴 = {𝑎1, 𝑎2, 𝑎3}. For simplicity, we may write this as  {1, 2, 3}. That is, 

the integer  𝑖  represents  𝑖th  element in the set. Then there are  3! = 6 permutations in  𝑆3. 
 

Consider a permutation  𝜌1 ∈ 𝑆3  defined as  𝜌1(1) = 2, 𝜌1(2) = 3  and  𝜌1(3) = 1. For 

simplicity, we write this as 

𝜌1 = (
1 2 3
2 3 1

). 

 

i.e.  the image of each element is written immediately below that element. Even simply, 

since  1 → 2, 2 → 3  and  3 → 1  under  𝜌1, we may write it as 

𝜌1 = (1 2 3). 
 

Remark: An element that goes to the same element is not written. 
 

If we consider the permutation  𝜇1 = (
1 2 3
1 3 3

), we may write this  𝜇1 = (2 3). 

 

Example 5.1 Write down all 6 permutations of the set  𝑆3. 

 

Composition of Permutations 

Let  𝜌  and  𝜇  be two permutations defined on a set  𝐴. The com[position 𝜌 ∘ 𝜇, simply  𝜌𝜇  

is defined by 

𝜌 ∘ 𝜇(𝑥) = 𝜌𝜇(𝑥) = 𝜌[𝜇(𝑥)] 

for  all  𝑥 ∈ 𝐴. 

 

Example 5.2 Let  𝜌 = (1 2 5 4 )  and  𝜇 = (1 2 3 4 5). Verify that  𝜌𝜇 ≠ 𝜇𝜌. 

Theorem 5.2 

Let  𝐴  be a finite set containing  𝑛  distinct elements. Then,  𝑆𝑛  of  𝐴  forms a finite group of 

order  𝑛! with respect to composition of permutations as the operation. 
 

• Closure Property: Composition of two bijective mappings is again a bijective 

mapping. 

• Associativity: Assosiativity holds for the composition of mappings 

• Identity element: A mapping which maps an element to itself is the identity 

permutation and is denoted by  𝜔  or  (1). 

 For example, in  𝑆3  𝜔 = (1) = (
1 2 3
1 2 3

).  Note that  𝜔𝜌 = 𝜌𝜔 = 𝜌  for all  𝜌 ∈ 𝑆𝑛. 

 

• Inverse element: The inverse of a permutation  𝜌  is obtained by reversing it and is 

denoted by  𝜌−1. 
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Definition 5.2 cycles of length  𝒓 
 

• A subset  𝜌 = {𝑖1, 𝑖2, ⋯ , 𝑖𝑟}  of  (1, 2,⋯ , 𝑛), usually written as  ((𝑖1, 𝑖2, ⋯ , 𝑖𝑟), is called a 

cycle of length  𝑟  ( or an  𝑟 −cycle), if  𝜌(𝑖𝑗) = 𝜌(𝑖𝑗+1)  for  𝑗 = 1, 2,⋯ , 𝑟 − 1,  and  𝜌(𝑖𝑟) =

𝑖1  and  𝜌(𝑘) = 𝑘  for all  𝑘 ∉ 𝜌. 

 

• A cycle of length  2  is called a transposition. 

 

Theorem 5.3 

i. (𝑖1, 𝑖2, ⋯ , 𝑖𝑟) = (𝑖2, ⋯ , 𝑖𝑟 , 𝑖1) = (𝑖3, ⋯ , 𝑖𝑟 , 𝑖1, 𝑖2) = ⋯ = (𝑖𝑟 , 𝑖1, 𝑖2, ⋯ , 𝑖𝑟−1 ). 

ii. (𝑖1, 𝑖2, ⋯ , 𝑖𝑟)
−1 = (𝑖𝑟, 𝑖𝑟−1, ⋯ , 𝑖1). 

iii. (𝑖1, 𝑖2, ⋯ , 𝑖𝑟) = (𝑖1, 𝑖2, ⋯ , 𝑖𝑗)(𝑖𝑗 , 𝑖𝑗+1, ⋯ , 𝑖𝑟). 

 

Example 5.3 Let  𝜌 = (1 2 5 4 ). Find  𝜌−1  and  check that    𝜌𝜌−1 = 𝜔. 

 

Definition 5.3 𝝆 − orbits 

• If there is no common element between two permutations, they are said to be disjoint. 

• The collection of disjoint cycles of a permutation  𝜌 in  𝑆𝑛  is called the set of  𝜌 − orbits. 

 

Theorem 5.4 

Any permutation can be written as a product of disjoint cycles. 

Any permutation can be written as a product of transpositions. 

 

Definition 5.4 Parity or Signature of a permutation 

If a permutation  𝜌   can be expressed as a product of odd number of transpositions, we say 

that the parity of  𝜌  ( or simply,  𝜌)  is odd. This fact is denoted by  𝜀𝜌 = −1, where  𝜀𝜌  is 

read as the signature of  𝜌. 

Theorem 5.5 For any permutations  𝜌  and  𝜎, 

𝑖.     𝜀𝜌 = 𝜀𝜌−1           𝑖𝑖.   𝜀𝜌𝜎 = 𝜖𝜌𝜀𝜎 

 

Definition 5.5 order of a permutation 

The smallest positive integer  𝑚  such that   𝜌𝑚 = 𝜔  is called the order of the permutation  

𝜌 and this fact is denoted by  |𝜌| = 𝑚. 
 

Theorem 5.6 

i. If  𝜌, 𝜎  are disjoint cycles, then  𝜌𝜎 = 𝜎𝜌. 

ii. order of  (𝑖1, 𝑖2, ⋯ , 𝑖𝑟) = 𝑟. 

iii. |𝜌| =  |𝜌−1|. 

iv. If  𝜌, 𝜎  are disjoint cycles of lengths  𝑙  and  𝑚 respectively, then  |𝜌𝜎| = lcm (𝑙,𝑚). 

v. If  𝜌, 𝜎  are disjoint cycles such that  (𝜌𝜎)𝑟 = 𝜔, then  𝜌𝑟 = 𝜎𝑟 = 𝜔. 
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Theorem 5.7 

i. Let  𝜎 = (𝑖1, 𝑖2, ⋯ , 𝑖𝑟)  be a given cycle in  𝑆𝑛 and  𝑚  be a given positive integer. Then, 

𝜎𝑚 = (
𝑖1 𝑖2 ⋯
𝑖𝑚+1 𝑖𝑚+2 ⋯    

𝑖4
𝑖𝑚+𝑟

), 

 where  𝑚 + 𝑘  denotes the residue of  (𝑚 + 𝑘)  modulo  𝑟  and  𝑖0 = 𝑖𝑟. 

 

ii. for any  𝜌 ∈ 𝑆𝑛,  𝜌𝜎𝜌−1 = 𝜌(𝑖1, 𝑖2, ⋯ , 𝑖𝑟)𝜌
−1 = (𝜌(𝑖1), 𝜌(𝑖2), ⋯ , 𝜌(𝑖𝑟)). 

 

Example 5.4 Let  𝜌 = (
1 2 3
2 3 1

     
4 5 6
5 4 7

    
7 8
8 6

)  and  𝜎 = (
1 2 3
5 1 4

     
4 5 6
6 2 7

    
7 8
3 8

). 

i. Decompose  𝜌, 𝜎, 𝜌𝜎  and  𝜎𝜌  as a product of disjoint cycles. 

ii. Express 𝜌𝜎, 𝜎𝜌  and   𝜌𝜎𝜌−1  as a product of transpositions. 

iii. Find the signatures of 𝜌𝜎, 𝜎𝜌  and   𝜌𝜎𝜌−1. 

iv. What are the  𝜌 − orbits and  𝜎 − orbits? 

v. Find the order of  𝜌𝜎, 𝜎𝜌  and   𝜌𝜎𝜌−1. 

Example 5.5  Let  𝜌 = (2 3 5 6 8)  and  𝜎 = (1 3 4)(2 6 7).  Find  𝜌18  and  𝜌𝜎𝜌−1. 

 

EXERCISES 5 

1. Let  𝜌 = (
1 2 3
3 5 4

    
4 5 6
6 9 7

    
7 8 9
1 8 10

    
10
2
)  be a permutation in  𝑆10. 

 (a) Express  𝜌  as a product of disjoint cycles  and  as a product of transpositions. 

 (b) What is the parity and order of  𝜌? 

 (c) Find  𝜌−1  and  𝜌99. 

 (d) Find a permutation  𝜎 (≠ 𝜔, 𝜌, 𝜌−1)  such that  𝜌−1𝜎 𝜌 = 𝜎. 

 

2. Let  𝛼 = (1 3)(2 5 7 ), 𝛽 = (1 3 4 6)  and  𝛾 = (1 5 7 3 4 6 2)  be permutations in  𝑆7. 

 (a) Find  𝛼𝛽, 𝛼𝛾𝛼−1  and  𝛾−1𝛽−1𝛼𝛽𝛾. 

 (b) Find a permutation  𝜃  in  𝑆7  such that  𝜃𝛾8𝜃−1 = (1 7 5 3 2 6 4). 
 

3. Let  𝜌 = (
1 2 3
3 6 5

     
4 5 6
4 1 2

    
7
7
)  and  𝜎 = (

1 2 3
6 5 3

     
4 5 6
4 2 1

   
7
7
)  be permutations 

in  𝑆7. 

 (a) What is the parity and order of  𝜌? 

 (b) Find  𝜌𝜎, 𝜌−1, 𝜌𝜎𝜌−1  and  𝜌40. 

(c) Show that it is not possible to find a permutation  𝜇  in  𝑆7  such that  𝜇−1𝜌𝜇 =

(1 6)(2 5). 

4. Let  𝜌 = (
1 2 3
2 3 1

     
4 5 6
5 6 8

    
7 8
7 4

)  and  𝜎 = (
1 2 3
8 3 4

     
4 5 6
1 6 7

    
7 8
5 2

)  be two 

permutations in  𝑆8. 

 (a) Express  𝜌  as a product of transpositions. 

 (b) Write  𝜎  as a product of transpositions. 

 (c) Find the order and the parity of  𝜌𝜎. 
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 (d) Find  𝜌−26. 

 (e) Find a permutation  𝛼 (≠ 𝜔)  in  𝑆8  such that  𝜌𝜎𝛼𝜎−1𝜌−1 = 𝛼. 

 

5. Let  𝜌 = (
1 2 3
5 3 1

     
4 5 6
7 2 4

    
7
6
)  and  𝜎 = (

1 2 3
3 6 5

     
4 5 6
7 1 2

   
7
4
). 

(a) Express  𝜌, 𝜎  and  𝜌𝜎  as the products of disjoint cycles. 

(b) Decompose  𝜌, 𝜎  and  𝜌𝜎  as the products of transpositions. 

(c) What are the  𝜌 − orbits and  𝜎 − orbits? 

(d) Calculate  |𝜌|, |𝜎−1|  and  |𝜌𝜎|. 

(e) Find    𝜌−1  and  𝜌206. 

(f) Find a non-trivial permutation  𝛼  such that  𝜌−1𝜎−1𝛼𝜎𝜌 = 𝛼. 

(g) Show that a permutation  𝛽  cannot be found such that  𝛽−1𝜌𝛽 = 𝜎. 

(h) Calculate the parity of the permutations  𝜌, 𝜎  and  𝜌𝜎 . 


