SOUTH EASTERN UNIVERSITY OF SRI LANKA
 DEPARTMENT OF MATHEMATICAL SCIENCES
 FACULTY OF APPLIED SCIENCES

MTS 00033 MULTIVARIATE CALCULUS

1. LIMITS AND CONTINUITY

1.1 Preliminaries

Definition 1.1 A point on \mathbb{R}^{n}

Let $D \subseteq \mathbb{R}^{n}$. Any ordered n-tuple $\underline{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ of real numbers in D is called a 'point' in D.

For example $(1,-1)$ is a point on \mathbb{R}^{2} and $(1,0,7)$ is a point on \mathbb{R}^{3}.

Definition 1.2 Open and Closed Balls

Open ball of radius r centered at $\underline{a} \in \mathbb{R}^{n}$ is defined as

$$
B_{r}(\underline{a})=\left\{\underline{x} \in \mathbb{R}^{n} \mid\|\underline{x}-\underline{a}\|<r\right\} .
$$

The set of all points

$$
\overline{B_{r}}(\underline{a})=\left\{\underline{x} \in \mathbb{R}^{n} \mid\|\underline{x}-\underline{a}\| \leq r\right\}
$$

is called the closed ball of radius r centered at \underline{a}.
For example, let $\underline{a}=(a, b) \in \mathbb{R}^{2}$. An open ball in \mathbb{R}^{2} centered at \underline{a} has the form

$$
\begin{aligned}
B_{r}(\underline{a}) & =\left\{\underline{x} \in \mathbb{R}^{2}| | \underline{x}-\underline{a} \mid<r\right\} \\
& =\left\{(x, y) \in \mathbb{R}^{2}:(x-a)^{2}+(y-b)^{2}<r^{2}\right\}
\end{aligned}
$$

Example 1.1 Find each of the following:
(i) Open ball centered at 2 and radius 3 in \mathbb{R}.
(ii) Open ball centered at $(2,-1)$ and radius 1 in \mathbb{R}^{2}.
(iii) Unit closed ball centered at the origin in \mathbb{R}^{3}.

Definition 1.3 Limit Points of a set

A point \underline{a} is called a limit point of the set D if and only if every open balls centered at \underline{a} contain some points of D other than \underline{a}.
That is,

$$
D \cap\left(B_{r}(\underline{a}) \backslash\{\underline{a}\}\right) \neq \Phi
$$

for any arbitrary small $r>0$.

Example 1.2 Find the set of all limit points of the open interval $I=(a, b)$.
Proposition 1.1 A finite set of points has no limit points.
Example 1.3 Consider the set $D=\{\underline{a}, \underline{b}, \underline{c}\}$, where $\underline{a}=(1,3), \underline{b}=(2,1), \underline{c}=(4,-1)$. Show that D has no limit points.

Proposition 1.2 Every points of \mathbb{R}^{n} is a limit point of \mathbb{R}^{n}.

Example 1.4 Every points of \mathbb{R}^{2} is a limit point of \mathbb{R}^{2}.

Definition 1.4 Functions of several variables

Let $D \subseteq \mathbb{R}^{n}$. A function $f: D \rightarrow \mathbb{R}^{m}$ of n - variables is a rule that assigns each point $\underline{x}=$ $\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in D$ to a point $\underline{y}=\left(y_{1}, y_{2}, \cdots, y_{m}\right) \in \mathbb{R}^{m}$, denoted by $f(\underline{x})=\underline{y}$. Here D is called the domain of the function f and the set of all points that f takes on \mathbb{R}^{m} is called the range of f. That is, range of $f=\{f(\underline{x}) \mid \underline{x} \in D\}$.

When $m=1$, the function is called single valued function; otherwise, it is called multivalued or vector (valued) functions.

When $n=1, f(x)$ is a function of single variable; otherwise, it is a function of several variables.

Example 1.5 Find the natural domain and range of the each of the following functions:
(i) $f(x, y)=x^{2}+y^{2}$,
(ii) $g(x, y)=x \ln \left(y^{2}-x\right)$,
(iii) $h(x, y, z)=\sqrt{9-x^{2}-y^{2}-z^{2}}$.

EXERCICES 1

1. Find the set of all limit points of the open ball $B_{r}(\underline{a})$ in \mathbb{R}^{n}. What is the set of all limit points of the interval $[a, b)$.
2. Find the all limit points of the set $D=\left\{\left(\frac{1}{m}, \frac{1}{n}\right): m, n \in \mathbb{N}\right\}$.

1.2 Limit of a function

Definition 1.5 The limit point of a function

Let \underline{a} be a limit point of $D\left(\subseteq \mathbb{R}^{n}\right)$. Then, we say that the function $f: D \rightarrow \mathbb{R}^{m}$ converges to a point $\underline{l} \in \mathbb{R}^{m}$ (or \underline{l} is the limit of f at \underline{a}) if and only if for each $\varepsilon>0$, there exists a $\delta>0$ such that

$$
0<\|\underline{x}-\underline{a}\|<\delta \quad\left(\text { or } \underline{x} \in B_{\delta}(\underline{a})\right) \Rightarrow\|f(\underline{x})-\underline{l}\|<\varepsilon .
$$

Example 1.6 Show that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2} y}{x^{2}+y^{2}}=0
$$

Example 1.7 Show that $\lim _{(x, y) \rightarrow(1,1)}\left(x^{2}+x y+y^{2}\right)=3$.
Remark: Most of the theorems and rules we had for function of single variable can be extended for functions of several variables.

1.3 Techniques of finding limits:

1.3.1 Use of Squeeze Lemma

Lemma 1.1 If $f(\underline{x}), g(\underline{x}), h(\underline{x})$ are functions such that

$$
\lim _{\underline{x} \rightarrow \underline{a}} f(\underline{x})=\lim _{\underline{x} \rightarrow \underline{a}} h(\underline{x})=\underline{l},
$$

then, $\lim _{\underline{x} \rightarrow \underline{a}} g(\underline{x})$ exists and $\lim _{\underline{x} \rightarrow \underline{a}} g(\underline{x})=\underline{l}$.
Example 1.8 Show that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2} y}{x^{2}+y^{2}}=0
$$

Example 1.9 Evaluate $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} \sin ^{2} y}{x^{2}+2 y^{2}}$.
Example 1.10 Evaluate $\lim _{(x, y) \rightarrow(0,0)} \sin x \sin \left(\frac{1}{x+y}\right)$.

1.3.2 Use of Polar Coordinates

Let $x=r \cos \theta, y=r \sin \theta \cdot \sin \theta$ Then, $(x, y) \rightarrow(0,0)$ implies that $r \rightarrow 0^{+}$.

Example 1.11 Evaluate $\lim _{(x, y) \rightarrow(0,0)} \frac{3 x^{2} y}{x^{2}+y^{2}}$.
Example 1.12 Evaluate $\lim _{(x, y) \rightarrow(1,2)} \frac{(x+y-3)^{2}}{\sqrt{(x-1)^{2}+(y-2)^{2}}}$.

Examples on Functions of three or more variables.

Example 1.13 Evaluate $\lim _{(x, y, z, t) \rightarrow(0,0,0,0)} \frac{\left(x^{2}+y^{2}\right)\left(z^{2}+t^{2}\right)}{\left(x^{2}+y^{2}+z^{2}+t^{2}\right)}$.
Example 1.14 Evaluate $\lim _{(x, y, z,) \rightarrow(1,0,0,)} \tan (y-x z) \cos \left(\frac{1}{(x-1) y+z^{2}}\right)$.

1.3.3 To Show Limit Does Not Exist

Lemma 1.2 If $\lim _{\underline{x} \rightarrow \underline{a}} f(\underline{x})=\underline{l}$ exists, then
(i) its value \underline{l} is unique, and
(ii) $\quad \underline{l}$ is independent of the choice of any path approaching \underline{a}.

We use this fact to show that the limit of a function does not exist. i.e. if the limit of a function along two different Paths are not equal, then $\lim _{\underline{x} \rightarrow \underline{a}} f(\underline{x})$ does not exist.

Example 1.15 Find the limit or show that the limit does not exists:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-y^{2}}{x^{2}+y^{2}} .
$$

Example 1.16 Find the limit or show that the limit does not exists:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{x^{2}+y^{2}} .
$$

Example 1.17 Find the limit or show that the limit does not exists:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}}
$$

1.4 Repeated (Iterated) limits

Definition 1.6 Let the function $f(x, y)$ is defined in the neighborhood of (a, b). Then the limit $\lim _{y \rightarrow b}\left(\lim _{x \rightarrow a} f(x, y)\right)$, if exist, is said to be repeated limits of f as $x \rightarrow a, y \rightarrow b$.

Remarks:

i. In general, $\lim _{y \rightarrow b}\left(\lim _{x \rightarrow a} f(x, y)\right) \neq \lim _{x \rightarrow a}\left(\lim _{y \rightarrow b} f(x, y)\right)$.
ii. If $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ exists, then , $\lim _{y \rightarrow b}\left(\lim _{x \rightarrow a} f(x, y)\right)=\lim _{x \rightarrow a}\left(\lim _{y \rightarrow b} f(x, y)\right)$. But the converse is not true.
iii. If $\lim _{y \rightarrow b}\left(\lim _{x \rightarrow a} f(x, y)\right) \neq \lim _{x \rightarrow a}\left(\lim _{y \rightarrow b} f(x, y)\right)$ then $\lim _{(x, y) \rightarrow(a, b)} f(x, y)$ does not exist.

Example 1.18 Show that iterated limits exist but simultaneous limit does not exist for the function

$$
f(x, y)=\frac{x y}{x^{2}+y^{2}} ; \quad D=\mathbb{R} \backslash\{(0,0)\} .
$$

Example 1.19 Show that iterated limits exist but simultaneous limit does not exist for the function

$$
f(x, y)=\left\{\begin{array}{ll}
1, & x y \neq 0 \\
0, & x y=0
\end{array} ; \quad D=\mathbb{R} \backslash\{(0,0)\} .\right.
$$

Example 1.20 Verify that if iterated limits exist and equal and simultaneous limit exists, then they are equal to each other.

$$
f(x, y)=\frac{3 x^{2} y}{x^{2}+y^{2}} ; \quad D=\mathbb{R} \backslash\{(0,0)\} .
$$

Example 1.21 Find the iterated limits and simultaneous limit:

$$
f(x, y)=\left\{\begin{array}{cc}
x \sin \left(\frac{1}{y}\right), & x y \neq 0 \\
0, & x y=0
\end{array}\right.
$$

Example 1.22 Find the iterated limits and simultaneous limit:

$$
f(x, y)=\left\{\begin{array}{cc}
x \sin \left(\frac{1}{y}\right)+y \sin \left(\frac{1}{x}\right), & x y \neq 0 \\
0, & x y=0
\end{array}\right.
$$

1.5 Continuity of a function

Definition 1.7 The function $f: D \rightarrow \mathbb{R} ; D \subseteq \mathbb{R}^{2}$ is said to be continuous at a point $(a, b) \in$ D if and only if for each $\varepsilon>0$, there exists $\delta(\varepsilon)>0$ such that $|f(x, y)-f(a, b)|<\varepsilon$ whenever $\sqrt{(x-a)^{2}+(y-b)^{2}}<\delta$.

That is, The function f is continuous at (a, b) if and only if

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)
$$

A point (a, b) is said to be the point discontinuity if the function f is not continuous at (a, b).
Example 1.23 Discuss the continuity of each of the following function:
(i) $f(x, y)=\frac{x-y}{1+x+y}$,
(ii) $g(x, y)=\frac{x-y}{1+x^{2}+y^{2}}$,
(iii) $\quad h(x, y)=\frac{3 x^{2} y}{\sin \pi x}$.

Example 1.24 Discuss the continuity of the following function

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x^{2}-y^{2}}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\
0, & (x, y)=(0,0)
\end{array}\right.
$$

Example 1.25 Investigate continuity of $f(x, y)$:

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{3 x y}{\sqrt{x^{2}+y^{2}}}, & (x, y) \neq(0,0) \\
0, & (x, y)=(0,0)
\end{array}\right.
$$

Example 1.26 Investigate continuity of $f(x, y)$:

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{\sin ^{2}(x-y)}{|x|+|y|}, & (x, y) \neq(0,0) \\
0, & (x, y)=(0,0)
\end{array}\right.
$$

