SOUTH EASTERN UNIVERSITY OF SRI LANKA Faculty of Applied Sciences Department of Mathematical Sciences

MTC 12011 MATHEMATICS FOR BIOLOGY II

2019 / 2020

2 MATRIX OPERATIONS

Definition 2.1 (Matrix Addition) If $A = (a_{ij})$ and $B = (b_{ij})$ are matrices of the same size $m \times n$, then the sum of A and B is the matrix of the size $m \times n$ defined by $C = A + B$, where

$$
c_{ij} = a_{ij} + b_{ij} \quad \text{for all } i, j.
$$

Definition 2.2 (Scalar Multiplication) Let $A = (a_{ij})$ be any matrix and α be any real number (scalar). Then, the scalar multiplication of A is defined by $B = \alpha A$, where

$$
b_{ij} = \alpha a_{ij} \quad \text{for all } i, j.
$$

Remark2.1: The size of αA is as same as size of A.

Remark2.2: We define the difference $D = A - B$ by $d_{ij} = a_{ij} - b_{ij}$ for all *i*, *j*.

Example 2.1 Let $A = \begin{bmatrix} \end{bmatrix}$ 5 3 1 0 1 4 −2 0 3 | and $B =$ 1 0 7 $0 \t2 \t-1$ −2 5 0 . Compute $\frac{1}{2}(2A - 3B)$.

Theorem 2.1 Let A, B, C be any three matrices of the same size and α, β be any two real numbers. Then,

- (a) Closure property: $A + B$ is also a matrix of the same size and is unique.
- (b) Associativity: $(A + B) + C = A + (B + C)$.
- (c) Commutativity: $A + B = B + A$.

(d) Distributive laws: $(\alpha + \beta)A = \alpha A + \beta A$, $\alpha (A + B) = \alpha A + \alpha B,$

$$
\alpha(\beta A)=\alpha\beta A.
$$

- (e) $0 A = 0.$
- (f) α **0** = **0**.

Definition 2.3 (matrix Multiplication) Let $A = (a_{ij})$ be $m \times p$ matrix and $B = (b_{ij})$ be an $p \times n$ matix. Then the product $C = AB$ is an $m \times n$ matrix defined by

$$
c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}, \qquad 1 \le i \le m, \ i \le j \le n.
$$

Remark2.3: Note that number of columns in A is equal to the number of rows in B . In this case, we say that A and B are conformable for the product AB .

Example 2.2 1 3 2 $\begin{pmatrix} 1 & 3 & 2 \\ -1 & 0 & 2 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 3 & 2 \\ 0 & 2 & 2 \end{pmatrix}$ 3 2 0 1 0 1 −2 1 1). Compute AB or BA which is conformable for the matrix multiplication.

Example 2.3 Let $A = (2, -1)$ and $B = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\binom{1}{4}$. Compute *AB* and *BA*.

Example 2.4 Show that $\begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix}$ $\binom{2}{1}$ $\binom{-2}{1}$ $\binom{4}{1}$ $\begin{pmatrix} -2 & -1 \\ 1 & -2 \end{pmatrix} = 0.$

Remark2.4: Note that if the product of two matrices is zero, then one of them need not to be zero matrix.

Example 2.5 Let $A = \begin{pmatrix} 1 & -1 \\ 2 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$. Find A^2 and A^3 .

Theorem 2.2 Let A, B, C be matrices for which all oprations below make sense. Then

- (a) Associativity: $(AB)C = A(BC)$.
- (b) Distributive laws: $A(B+C) = AB + AC$, $A(B-C) = AB AC$,

$$
(\alpha A)B = A(\alpha B) = \alpha (AB),
$$

$$
(\alpha A)(\beta B) = \alpha \beta (AB)
$$

(c) $0 A = 0 A = 0.$

Remark2.5: Note that matrix multiplication is not commutative. That is, $AB \neq BA$ in general.

Definition 2.4 We define the transpose of a matrix \vec{A} of size $m \times n$, and denoted by A^T , to be the $n \times m$ matrix with entries $(A^T)_{ij} = a_{ji}$.

Remark2.6: In other words, the transpose of a matrix is obtained by interchanging the rows and columns of the given matrix.

Theorem 2.3 Let A, B be two matrices. Then,

$$
(a) (A^T)^T = A.
$$

- (b) $(A \pm B)^{T} = A^{T} \pm B^{T}$.
- (c) $(AB)^{T} = B^{T}A^{T}$.
- (d) $(cA)^{T} = c A^{T}$.

Example 2.6 Verify the theorem 2.3 for the matrices $A = \begin{pmatrix} 1 & 3 \\ 1 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 3 \\ 3 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & 3 \\ 3 & 1 \end{pmatrix}$ and $c = 5$.

Definition 2.5 A matrix *X* is called symmetric if $X^T = X$ and skew symmetric if $X^T = -X$.

Example 2.7 Let $A = \begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}$ $\begin{pmatrix} 1 & 3 \\ 0 & 2 \end{pmatrix}$. Show that $A + A^T$ is symmetric and $A - A^T$ is skew symmetric.