
System Modeling

ITM 32023
Software Engineering

System modeling

• System modeling is the process of developing abstract
models of a system, with each model presenting a
different view or perspective of that system.

• System modeling has now come to mean representing a
system using some kind of graphical notation, which is
now almost always based on notations in the Unified
Modeling Language (UML).

• System modelling helps the analyst to understand the
functionality of the system and models are used to
communicate with customers.

Existing and planned system models

• Models of the existing system are used during requirements
engineering. They help clarify what the existing system does and
can be used as a basis for discussing its strengths and weaknesses.
These then lead to requirements for the new system.

• Models of the new system are used during requirements
engineering to help explain the proposed requirements to other
system stakeholders. Engineers use these models to discuss design
proposals and to document the system for implementation.

• In a model-driven engineering process, it is possible to generate a

complete or partial system implementation from the system model.

System perspectives

• An external perspective, where you model the context or
environment of the system.

• An interaction perspective, where you model the
interactions between a system and its environment, or
between the components of a system.

• A structural perspective, where you model the
organization of a system or the structure of the data that
is processed by the system.

• A behavioral perspective, where you model the dynamic
behavior of the system and how it responds to events.

UML diagram types

• Activity diagrams, which show the activities involved in a
process or in data processing .

• Use case diagrams, which show the interactions between a
system and its environment.

• Sequence diagrams, which show interactions between actors
and the system and between system components.

• Class diagrams, which show the object classes in the system
and the associations between these classes.

• State diagrams, which show how the system reacts to internal
and external events.

Use of graphical models

• As a means of facilitating discussion about an
existing or proposed system
▫ Incomplete and incorrect models are OK as their role

is to support discussion.

• As a way of documenting an existing system
▫ Models should be an accurate representation of the

system but need not be complete.

• As a detailed system description that can be used to
generate a system implementation
▫ Models have to be both correct and complete.

Context models

Context models
• Context models are used to illustrate the

operational context of a system - they show
what lies outside the system boundaries.

• Social and organisational concerns may affect
the decision on where to position system
boundaries.

• Architectural models show the system and its
relationship with other systems.

System boundaries

• System boundaries are established to define what is
inside and what is outside the system.
▫ They show other systems that are used or depend on

the system being developed.

• The position of the system boundary has a profound
effect on the system requirements.

• Defining a system boundary is a political judgment
▫ There may be pressures to develop system boundaries

that increase / decrease the influence or workload of
different parts of an organization.

Process perspective

• Context models simply show the other systems
in the environment, not how the system being
developed is used in that environment.

• Process models reveal how the system being
developed is used in broader business processes.

• UML activity diagrams may be used to define
business process models.

Interaction models

Interaction models

• Modeling user interaction is important as it helps to
identify user requirements.

• Modeling system-to-system interaction highlights
the communication problems that may arise.

• Modeling component interaction helps us
understand if a proposed system structure is likely
to deliver the required system performance and
dependability.

• Use case diagrams and sequence diagrams may be
used for interaction modelling.

Use case modeling
• Use cases were developed originally to support

requirements elicitation and now incorporated into
the UML.

• Each use case represents a discrete task that
involves external interaction with a system.

• Actors in a use case may be people or other systems.

• Represented diagrammatically to provide an
overview of the use case and in a more detailed
textual form.

Transfer-data use case

• A use case in the Mentcare system

Tabular description of the ‘Transfer
data’ use-case

MHC-PMS: Transfer data

Actors Medical receptionist, patient records system (PRS)

Description A receptionist may transfer data from the Mentcase
system to a general patient record database that is
maintained by a health authority. The information
transferred may either be updated personal information
(address, phone number, etc.) or a summary of the
patient’s diagnosis and treatment.

Data Patient’s personal information, treatment summary

Stimulus User command issued by medical receptionist

Response Confirmation that PRS has been updated

Comments The receptionist must have appropriate security
permissions to access the patient information and the
PRS.

Use cases in the Mentcare system involving
the role ‘Medical Receptionist’

Sequence diagrams

• Sequence diagrams are part of the UML and are used to
model the interactions between the actors and the objects
within a system.

• A sequence diagram shows the sequence of interactions that
take place during a particular use case or use case instance.

• The objects and actors involved are listed along the top of the
diagram, with a dotted line drawn vertically from these.

• Interactions between objects are indicated by annotated
arrows.

Sequence diagram for View patient
information

Structural models

Structural models

• Structural models of software display the
organization of a system in terms of the components
that make up that system and their relationships.

• Structural models may be static models, which
show the structure of the system design, or dynamic
models, which show the organization of the system
when it is executing.

• You create structural models of a system when you
are discussing and designing the system
architecture.

Class diagrams

• Class diagrams are used when developing an object-oriented
system model to show the classes in a system and the
associations between these classes.

• An object class can be thought of as a general definition of one
kind of system object.

• An association is a link between classes that indicates that
there is some relationship between these classes.

• When you are developing models during the early stages of
the software engineering process, objects represent something
in the real world, such as a patient, a prescription, doctor, etc.

UML classes and association

Classes and associations in the MHC-
PMS

The Consultation class

Generalization

• Generalization is an everyday technique that we use
to manage complexity.

• Rather than learn the detailed characteristics of
every entity that we experience, we place these
entities in more general classes (animals, cars,
houses, etc.) and learn the characteristics of these
classes.

• This allows us to infer that different members of
these classes have some common characteristics e.g.
squirrels and rats are rodents.

Generalization
• In modeling systems, it is often useful to examine the classes in a

system to see if there is scope for generalization. If changes are
proposed, then you do not have to look at all classes in the
system to see if they are affected by the change.

• In object-oriented languages, such as Java, generalization is
implemented using the class inheritance mechanisms built into
the language.

• In a generalization, the attributes and operations associated with
higher-level classes are also associated with the lower-level
classes.

• The lower-level classes are subclasses inherit the attributes and
operations from their super classes. These lower-level classes
then add more specific attributes and operations.

A generalization hierarchy

A generalization hierarchy with added
detail

Object class aggregation models

• An aggregation model shows how classes that
are collections are composed of other classes.

• Aggregation models are similar to the part-of
relationship in semantic data models.

The aggregation association

Behavioral models

Behavioral models

• Behavioral models are models of the dynamic
behavior of a system as it is executing. They show
what happens or what is supposed to happen when
a system responds to a stimulus from its
environment.

• You can think of these stimuli as being of two types:
▫ Data Some data arrives that has to be processed by the

system.
▫ Events Some event happens that triggers system

processing. Events may have associated data,
although this is not always the case.

Data-driven modeling

• Many business systems are data-processing systems
that are primarily driven by data. They are
controlled by the data input to the system, with
relatively little external event processing.

• Data-driven models show the sequence of actions
involved in processing input data and generating an
associated output.

• They are particularly useful during the analysis of
requirements as they can be used to show end-to-
end processing in a system.

An activity model of the insulin
pump’s operation

Order processing

Event-driven modeling

• Real-time systems are often event-driven, with
minimal data processing. For example, a landline
phone switching system responds to events such as
‘receiver off hook’ by generating a dial tone.

• Event-driven modeling shows how a system
responds to external and internal events.

• It is based on the assumption that a system has a
finite number of states and that events (stimuli) may
cause a transition from one state to another.

State machine models

• These model the behaviour of the system in response to
external and internal events.

• They show the system’s responses to stimuli so are often
used for modelling real-time systems.

• State machine models show system states as nodes and
events as arcs between these nodes. When an event
occurs, the system moves from one state to another.

• State charts are an integral part of the UML and are used
to represent state machine models.

State diagram of a microwave oven

Microwave oven operation

States and stimuli for the microwave
oven

State Description

Waiting The oven is waiting for input. The display shows the current time.

Half power The oven power is set to 300 watts. The display shows ‘Half power’.

Full power The oven power is set to 600 watts. The display shows ‘Full power’.

Set time The cooking time is set to the user’s input value. The display shows
the cooking time selected and is updated as the time is set.

Disabled Oven operation is disabled for safety. Interior oven light is on.
Display shows ‘Not ready’.

Enabled Oven operation is enabled. Interior oven light is off. Display shows
‘Ready to cook’.

Operation Oven in operation. Interior oven light is on. Display shows the timer
countdown. On completion of cooking, the buzzer is sounded for
five seconds. Oven light is on. Display shows ‘Cooking complete’
while buzzer is sounding.

States and stimuli for the microwave
oven

Stimulus Description

Half power The user has pressed the half-power button.

Full power The user has pressed the full-power button.

Timer The user has pressed one of the timer buttons.

Number The user has pressed a numeric key.

Door open The oven door switch is not closed.

Door closed The oven door switch is closed.

Start The user has pressed the Start button.

Cancel The user has pressed the Cancel button.

Model-driven engineering

Model-driven engineering

• Model-driven engineering (MDE) is an approach to
software development where models rather than
programs are the principal outputs of the development
process.

• The programs that execute on a hardware/software
platform are then generated automatically from the
models.

• Proponents of MDE argue that this raises the level of
abstraction in software engineering so that engineers no
longer have to be concerned with programming
language details or the specifics of execution platforms.

Usage of model-driven engineering

• Model-driven engineering is still at an early stage of
development, and it is unclear whether or not it will have a
significant effect on software engineering practice.

• Pros
▫ Allows systems to be considered at higher levels of abstraction
▫ Generating code automatically means that it is cheaper to adapt

systems to new platforms.
• Cons

▫ Models for abstraction and not necessarily right for
implementation.

▫ Savings from generating code may be outweighed by the costs of
developing translators for new platforms.

Model driven architecture

• Model-driven architecture (MDA) was the precursor
of more general model-driven engineering

• MDA is a model-focused approach to software
design and implementation that uses a subset of
UML models to describe a system.

• Models at different levels of abstraction are created.
From a high-level, platform independent model, it
is possible, in principle, to generate a working
program without manual intervention.

Types of model

• A computation independent model (CIM)
▫ These model the important domain abstractions used in a

system. CIMs are sometimes called domain models.

• A platform independent model (PIM)
▫ These model the operation of the system without reference

to its implementation. The PIM is usually described using
UML models that show the static system structure and how
it responds to external and internal events.

• Platform specific models (PSM)
▫ These are transformations of the platform-independent

model with a separate PSM for each application platform.
In principle, there may be layers of PSM, with each layer
adding some platform-specific detail.

MDA transformations

Multiple platform-specific models

Agile methods and MDA

• The developers of MDA claim that it is intended to
support an iterative approach to development and so
can be used within agile methods.

• The notion of extensive up-front modeling contradicts
the fundamental ideas in the agile manifesto and I
suspect that few agile developers feel comfortable with
model-driven engineering.

• If transformations can be completely automated and a
complete program generated from a PIM, then, in
principle, MDA could be used in an agile development
process as no separate coding would be required.

Adoption of MDA

• A range of factors has limited the adoption of
MDE/MDA

• Specialized tool support is required to convert models
from one level to another

• There is limited tool availability and organizations may
require tool adaptation and customisation to their
environment

• For the long-lifetime systems developed using MDA,
companies are reluctant to develop their own tools or
rely on small companies that may go out of business

Adoption of MDA

• Models are a good way of facilitating discussions
about a software design. However the abstractions
that are useful for discussions may not be the right
abstractions for implementation.

• For most complex systems, implementation is not
the major problem – requirements engineering,
security and dependability, integration with legacy
systems and testing are all more significant.

Adoption of MDA

• The arguments for platform-independence are only
valid for large, long-lifetime systems. For software
products and information systems, the savings from
the use of MDA are likely to be outweighed by the
costs of its introduction and tooling.

• The widespread adoption of agile methods over the
same period that MDA was evolving has diverted
attention away from model-driven approaches.

Key points

• A model is an abstract view of a system that ignores system details.
Complementary system models can be developed to show the
system’s context, interactions, structure and behaviour.

• Context models show how a system that is being modeled is
positioned in an environment with other systems and processes.

• Use case diagrams and sequence diagrams are used to describe the
interactions between users and systems in the system being
designed. Use cases describe interactions between a system and
external actors; sequence diagrams add more information to these
by showing interactions between system objects.

• Structural models show the organization and architecture of a
system. Class diagrams are used to define the static structure of
classes in a system and their associations.

Key points

• Behavioral models are used to describe the dynamic behavior
of an executing system. This behavior can be modeled from
the perspective of the data processed by the system, or by the
events that stimulate responses from a system.

• Activity diagrams may be used to model the processing of
data, where each activity represents one process step.

• State diagrams are used to model a system’s behavior in
response to internal or external events.

• Model-driven engineering is an approach to software
development in which a system is represented as a set of
models that can be automatically transformed to executable
code.

